首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Paraformaldehyde was employed as a hydride source in the palladium-catalyzed hydrodehalogenation of aryl iodides and bromides. High throughput screening using a paper-based colorimetric iodide sensor (PBCIS) showed that Pd(OAc)2 and Cs2CO3 were the best catalyst and base, respectively. Aryl iodides and bromides were hydrodehalogenated to produce the reduced arenes using Pd(OAc)2 and Pd(PPh3)4 catalyst. This catalytic system showed good functional group tolerance. In addition, it was found that paraformaldehyde is the hydride source and the reducing agent for the formation of palladium nanoparticles.  相似文献   

2.
Abstract

Formation of stable and small-sized palladium nanoparticles of diameter 9.4?nm was accomplished by a simple heating of Pd(OAc)2 in 1-octyl-1,2,4-triazolium trifluoroacetate ionic liquid under standard atmospheric hydrogen pressure. Palladium nanoparticles were characterized by XRD, SEM, TEM, and EDX analysis techniques. The application of an addition reaction of arylboronic acid to nitrostyrenes provided diaryl-substituted products in high yields. This Pd-NPs are capable of being recycled by a simple decantation procedure and reusable up to four times without any effect on its catalytic activity.  相似文献   

3.
Palladium-catalyzed α-arylation of ketones, which can efficiently give coupling products by using appropriate ligands and bases, could be applied to a polycondensation reaction. Stable N-heterocyclic carbenes (NHC) were used as favorable ligands coordinating the Pd catalysts, which were generated in situ from commercially available palladium compounds such as Pd(OAc)2 and Pd2(dba)3 as suitable catalyst precursors in this polymerization. Using small amounts of binary catalysts, poly(aryl alkyl ketone)s were afforded in high yields from haloarylketones in the presence of a base. A primarily prepared palladium catalyst having an NHC ligand, [Pd(OAc)2(NHC)], also efficiently catalyzed the polycondensation, whereas a palladium compound bearing two carbene ligands, [PdX2(NHC)2], did not.  相似文献   

4.
Juzo Oyamada 《Tetrahedron》2007,63(51):12754-12762
Hydroarylation of propiolic acid derivatives with arenes in trifluoroacetic acid efficiently proceeded in the presence of PtCl2/AgOTf catalyst to give cis-cinnamic acid derivatives in good to high yields. This PtCl2/AgOTf-catalyzed reaction did not afford any 4-arylbuta-1,3-diene-1,3-dicarboxylic acid derivatives formed by Pd(OAc)2-catalyzed hydroarylation. The specific optimization of the catalytic hydroarylation and application to electron-rich arenes are reported.  相似文献   

5.
A series of well-defined N-heterocyclic carbene palladium (II) complexes with general formula (NHC)Pd(N˄O)(OAc) were prepared through reaction of Pd (NHC)(OAc)2(H2O) with 1-methyl-1H-pyrazole-3-carboxylic acid or 1-methyl-1H-indazole-3-carboxylic acid in the presence of K2CO3. These complexes were then used for desulfinative Sonogashira coupling of arylsulfonyl hydrazides with terminal alkynes. With low catalyst loading, all synthesized palladium compounds exhibited moderate to high catalytic activities for the reactions.  相似文献   

6.
An efficient catalytic system for the CH olefination of arenes with different allylic substrates is reported. The catalytic system is based on Pd(OAc)2 and a readily accessible bidentate S,O-ligand. The methodology shows high activity with a wide range of arenes, including bulky and, electron-rich and -poor arenes. The applicability of this catalyst is demonstrated in the late-stage functionalization of the complex molecule O-methylestrone.  相似文献   

7.
A series of ordered mesoporous organic–inorganic hybrid material was designed by using the amine‐functionalized SBA‐15 (PdX2@SBA‐15/NY, Y = 1, 2) as solid support for palladium complexes. Among them, the Pd(OAc)2/ethylenediamine complex encapsulated into SBA‐15 (Pd(OAc)2@SBA‐15/PrEn or Pd(OAc)2@SBA‐15/PrNHEtNH2) exhibits higher activity and selectivity toward Suzuki cross‐coupling reaction under aerobic conditions and water solvent mixture. The SBA‐15/PrEn supported palladium pre‐catalyst could be separated easily from reaction products and used repetitively several times, showing its superiority over homogeneous catalysts for industrial and chemical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
钯配合物催化烯烃氧化合成酮类物质的研究进展   总被引:1,自引:0,他引:1  
本文系统地评述了钯配合物催化烯烃氧化合成酮类物质的研究进展。综述了改进Wacker 类催化剂催化活性的几种方法。总结了烯烃氧化合成酮类物质反应的几种典型催化体系及其作用机理。着重介绍了Pd (Ⅱ) HPA (杂多酸)、Pd (Ⅱ) FePc (酞菁铁)、Pd (Ⅱ) HQ (氢醌) FePc、Pd (Ⅱ) HQHPA、Pd (Ⅱ) CuSO4 HPA 等Wacker 类催化体系在烯烃氧化合成酮类物质中的应用; 对Pd (Ⅱ) LCoNO2、PdCl2(MeCN)2 CuCl、Pd (OAc)2 吡啶、氟两相等非Wacker 类催化体系在烯烃氧化合成酮类物质中的应用也作了讨论。  相似文献   

9.
Triarylmethanols are effectively dehydroarylated and reacted with some unsaturated compounds by using an appropriate palladium catalyst system such as Pd(OAc)2-P(1-Nap)3 (1-Nap = 1-naphthyl) to give the corresponding arenes and hydroarylation products, respectively, along with diaryl ketones.  相似文献   

10.
Suzuki cross-coupling reaction was successfully carried out in ethanol utilizing a palladium colloidal solution stabilized by polyvinylpyrrolidone (PVP). High isolated yields (75-97%) to biaryls were obtained using different bases, aryl halides, and aryl boronic acids with a small loading of the palladium catalyst. Pd(0)-PVP nanoparticles with 3-6 nm of medium diameter were prepared from Pd(OAc)2 in the presence of the stabilizer PVP using methanol as the reducing agent.  相似文献   

11.
Alkenyl sulfoxide derivatives are obtained in high yields through a palladium-catalyzed Suzuki/Miyaura cross-coupling reaction of racemic and chiral 1-halo sulfoxides with aryl and alkenyl boronic acids. Chiral substrates react with no loss of optical purity and high optical yields. The reaction takes place with different palladium catalysts, such as Pd(PPh3)4 or Pd(OAc)2/DABCO. Although nitrogen ligands like DABCO lead to an active palladium catalyst, they are less effective than the phosphine ones.  相似文献   

12.
A simple method for the preparation of diaryl acetylenes in yields up to 61% from aryl bromides and 1-bromo-2-chloroethane using the palladium catalyst (dppb)Pd(OAc)2 under PTC conditions (solid KOH/18-crown-6) has been developed.  相似文献   

13.
A hierarchical titanium dioxide microspheres-supported palladium catalyst (Pd/TiO2-350) was prepared and characterized using BET, XRD, XPS, SEM, EDX, and TEM analyses. An ICP-OES analysis of Pd/TiO2-350 further confirmed the successful Pd immobilization on TiO2 with a palladium loading of 0.1 mmol g?1. Pd/TiO2-350 efficiently catalyzed the Suzuki-Miyaura reaction of aryl iodides with arylboronic acids to give the corresponding biaryl derivatives in good to excellent yields. After the reaction, the catalyst was recovered by centrifugation and reused three times without significant loss of its catalytic activity. Moreover, the loading of palladium species further decreased to 0.001 mol%, and the total turnover number and turnover frequency of the catalyst reached as high as 99 000 and 0.57 s?1, respectively.  相似文献   

14.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   

15.
Palladium catalyzed Heck reaction of 2-iodoanilines and acrylate has been developed. The palladium catalyzed Heck reaction of 2-iodoanilines can readily occur in CH3CN using Pd(OAc)2 (5.0?mol%) as catalyst, NEt3 as base under ligand-free conditions. And 2-alkenylanilines were obtained as the cross-coupling products with medium to high yield.  相似文献   

16.
Rodman DL  Carrington NA  Xue ZL 《Talanta》2006,70(2):426-431
The advanced oxidation process (AOP) for the pretreatment of model palladium catalysts has been studied. Most standard metal analysis techniques are for metal ions free of organic ligands. Spent palladium catalysts contain organic ligands that need to be removed prior to analysis. AOP uses a combination of hydrogen peroxide and UV light to generate radicals that decompose such ligands, freeing up metals for further analysis. Palladium acetate Pd(OAc)2, palladium acetylacetonate Pd(acac)2, and tris(dibenzylideneacetone)dipalladium (Pd2(dba)3) were chosen as model precious metal catalysts for investigation. AOP was found to decompose ligands in Pd(OAc)2, Pd(acac)2 and give accurate Pd(II) quantification, while ligand decomposition and oxidation of Pd(0) to Pd(II) were demonstrated in treatments involving Pd2(dba)3. The effects of solubility of the palladium complexes, continuous addition of H2O2 during AOP treatments, sample pH, concentration of H2O2, and length of UV irradiation are reported.  相似文献   

17.
《Comptes Rendus Chimie》2014,17(12):1184-1189
The solvent is certainly one of the main sources of wastes during palladium-catalysed direct arylation reactions. We found that such direct arylations of heteroaromatics can be performed using very high concentrations of reactants (0.5 M–5 M). However, the Pd catalyst precursor used must be adapted to both the solvent nature and the concentration of reactants. The reactions performed in DMA, NMP or DMF can be carried out in very concentrated reaction mixtures using 0.1 mol% Pd(OAc)2 catalyst without phosphine ligand. On the other hand, the reactions in CPME, pentan-1-ol or diethylcarbonate should be performed with a palladium catalyst associated with a phosphine ligand. These reaction conditions allow us to reduce the amount of wastes formed in the course of these couplings.  相似文献   

18.
Regioregular poly(3‐octylthiophene)s were synthesized through a palladium‐catalyzed Suzuki polycondensation of 2‐(5‐iodo‐4‐octyl‐2‐thienyl)‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane. The effects of the palladium catalyst {tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4], palladium(II) acetate [Pd(OAc)2], [1, 1′‐bis(diphenylphosphino)ferrocene]dichloropalladium(II) [Pd(dppf)Cl2], tris(dibenzylideneacetone)dipalladium(0), or bis(triphenylphosphine)palladium(II) dichloride [Pd(PPh3)2Cl2]} and the reaction conditions (bases and solvents) were investigated. NMR spectroscopy revealed that poly(3‐octylthiophene)s prepared via this route were essentially regioregular. According to size exclusion chromatography, the highest molecular weights were obtained with in situ generated Pd(PPh3)4 and tetrakis(tri‐o‐tolylphosphine]palladium(0) {Pd[P(o‐Tol)3]4} catalysts or more reactive, phosphine‐free Pd(OAc)2. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry was used to analyze end groups and allowed the determination of some mechanistic aspects of the Suzuki polycondensation. The polymers were commonly terminated with hydrogen or iodine as a result of deboronation and some deiodination. Pd(PPh3)4, Pd(PPh3)2Cl2, and Pd[P(o‐Tol)3]4 induced aryl–aryl exchange reactions with the palladium center and resulted in some chains having phenyl‐ and o‐tolyl‐capped chain ends. Pd(dppf)Cl2 yielded only one type of chain, and it had hydrogen end groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1454–1462, 2005  相似文献   

19.
Novel systems for palladium-catalyzed selective oxidation of ethylene to a mixture of ethylene glycol mono- and di-acetates as the major reaction products (90-95% selectivity) with H2O2 in acetic acid solution at ambient pressure and 20 °C were developed. The catalytic reaction is very efficient with up to 90% combined yield of glycol acetates with H2O2 as a limiting reagent and 1 mol% catalyst loading. The catalytic systems developed are comprised of a mixture of Pd(OAc)2, and 6-methyl substituted (2-pyridyl)methanesulfonate and/or di(6-pyridyl)ketone ligands. Compositions of the binary, Pd(OAc)2-dpk, Pd(OAc)2-Me-dpms, and ternary, Pd(OAc)2-dpk-Me-dpms, systems have been studied by means of 1H NMR spectroscopy and ESI mass spectrometry. Kinetics studies were performed as well and plausible reaction mechanism was suggested, which features facially chelating ligand-enabled facile oxidation of PdIIC2H4OAc intermediates with H2O2 to form PdIVC2H4OAc transients.  相似文献   

20.
A cross-linked polymer-supported ionic liquid immobilized palladium catalyst, which is prepared by reaction of the Pd(OAc)2 with copolymer of 3-butyl-1-vinylimidazolium iodide and divinylbenzene, was well characterized and employed as an effective heterogeneous catalyst for carbonylative Sonogashira coupling reaction of aryl iodides with terminal alkynes in water, affording the corresponding α,β-alkynyl ketones in good to excellent yields. The catalytic system not only solves the basic problem of homogeneous palladium catalyst recovery and reuse but also avoids the use of toxic phosphine ligands. The stability of supported palladium was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号