首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A visible light‐induced photocatalytic dehydrogenation/6π‐cyclization/oxidation cascade converts 1‐(nitromethyl)‐2‐aryl‐1,2,3,4‐tetrahydroisoquinolines into novel 12‐nitro‐substituted tetracyclic indolo[2,1‐a]isoquinoline derivatives. Various photocatalysts promote the reaction in the presence of air and a base, the most efficient being 1‐aminoanthraquinone in combination with K3PO4. Further, the 12‐nitroindoloisoquinoline products can be accessed directly from C1‐unfunctionalized 2‐aryl‐1,2,3,4‐tetrahydroisoquinolines by extending the one‐pot protocol with a foregoing photocatalytic cross‐dehydrogenative coupling reaction, resulting in a quadruple cascade transformation.  相似文献   

2.
《中国化学》2018,36(1):11-14
A visible light accelerated C–H functionalization reaction in palladium‐catalyzed arylation of vinyl arenes with diaryliodonium salts is reported in the absence of additional photosensitizer. The kinetic isotope effect (kH/kD) was changed from 3.6 (under darkness) to 1.1 when irradiated by visible light, which indicated that the C–H functionalization step was the rate determining step under darkness and significantly accelerated by the irradiation of visible light. Finally the synthesis of ortho tetra‐substituted vinylarene atropisomers with high enantiospecificity was realized via this protocol.  相似文献   

3.
A new series of nitro‐substituted bis(imino)pyridine ligands {2,6‐bis[1‐(2‐methyl‐4‐nitrophenylimino)ethyl]pyridine, 2,6‐bis[1‐(4‐nitrophenylimino)ethyl]pyridine, (1‐{6‐[1‐(4‐nitro‐phenylimino)‐ethyl]‐pyridin‐2‐yl}‐ethylidene)‐(2,4,6‐trimethyl‐phenyl)‐amine, and 2,6‐bis[1‐(2‐methyl‐3‐nitrophenylimino)ethyl]pyridine} and their corresponding Fe(II) complexes [{p‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐ Me? p‐NO2}FeCl2 ( 10 ), L2FeCl2 ( 11 ), {m‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? m‐NO2}FeCl2 ( 12 ), and {p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Mes}FeCl2 ( 14 )] were synthesized. According to X‐ray analysis, there were shortenings of the axial Fe? N bond lengths (up to 0.014 Å) in para‐nitro‐substituted complex 10 and (up to 0.015 Å) in meta‐nitro‐substituted complex 12 versus the Fe(II) complex without nitro groups [{o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me}FeCl2 ( 1 )]. Complexes 10 , 12 , and 14 afforded very active catalysts for the production of α‐olefins and were more temperature‐stable and had longer lifetimes than parent non‐nitro‐substituted Fe(II) complex 1 . The reaction between FeCl2 and a sterically less hindered ligand [p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Ph? p‐NO2] resulted in the formation of octahedral complex 11 . A para‐dialkylamino‐substituted bis(imino)pyridine ligand [p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2] and the corresponding Fe(II) complex [{p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2}FeCl2 ( 16 )] were synthesized to evaluate the effect of enhanced electron donation of the ligand on the catalytic performance. According to X‐ray analysis, there was a shortening (up to 0.043 Å) of the axial Fe? N bond lengths in para‐diethylamino‐substituted complex 16 in comparison with parent Fe(II) complex 1 . © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2615–2635, 2006  相似文献   

4.
A novel Cu(OAc)2·H2O catalyzed coupling reaction of N‐substituted‐2‐iodobenzamides with malononitrile to afford N‐substituted‐3‐amino‐4‐cyano‐isoquinoline‐1(2H)‐ones is described. The reaction proceeded in DMSO at 90°C for 5 h in nitrogen without external ligands.  相似文献   

5.
A series of novel substituted 3,4‐dihydro‐2H‐1,3‐benzoxazines were prepared in moderate to good yields by aza‐acetalizations of aromatic aldehydes with 2‐(N‐substituted aminomethyl)phenols in the presence of chlorotrimethylsilane or SnCl4. It was found that chlorotrimethylsilane was more effective for the reaction, especially for the reaction of fluorobenzaldehyde, and thereby, an efficient method for the preparation of 3,4‐dihydro‐2H‐1,3‐benzoxazines was developed. The structures of the compounds were determined by FT‐IR, 1H NMR, 13C NMR, MS, and elemental analysis.  相似文献   

6.
Cycloadditions of 2‐cyclopropylidene‐1,3‐dimethylimidazolidine ( 1 ), a strong, electron‐rich C‐nucleophile, with a variety of aryl‐substituted 1,2,4‐triazines occur at temperatures between ?100 and +100°, depending on the substitution pattern. At low temperatures, zwitterions, formed by nucleophilic attack of 1 on the triazines, could be detected spectroscopically and, in some cases, isolated. Two types of zwitterions were found: 1) those where the new bond was linked to C(5) of the triazine and which were formed in a reversible dead‐end equilibrium, and 2) those where the new bond was linked either to C(3) or C(6). The latter exhibited the same regiochemistry as the final cycloadducts, and might be intermediates of a two‐step Diels–Alder reaction. Energies and structural characteristics for stationary points in the reaction of monosubstituted triazines with 1 in the gas phase and in CH2Cl2 solution were calculated at the Becke3LYP/6‐311+G(d,p)//Becke3LYP/6‐31G(d) level of theory. Different reaction mechanisms are discussed on the basis of steric, electronic, and solvent effects.  相似文献   

7.
A regioselective synthesis of symmetrical and unsymmetrical benzopinacolones through aerobic dehydrogenative αarylation at the tertiary sp3 C?H bond of substituted 1,1‐diphenylketones with aromatic and heteroaromatic compounds, in the presence of K2S2O8 in CF3COOH at room temperature, is described. The reaction is proposed to go via a carbocation intermediate, which could be generated directly from cleavage of the sp3 C?H bond of 1,1‐diphenylketone. Subsequent αarylation was achieved at the methene sp3 carbon atom of the substituted ketone. A variety of substituted aromatic and heteroaromatic compounds were compatible with this reaction. In addition, benzopinacolones were converted into sterically hindered, tetrasubstituted alkenes and polycyclic aromatic compounds.  相似文献   

8.
A novel and efficient palladium‐catalyzed C2 arylation of N‐substituted indoles with 1‐aryltriazenes for the synthesis of 2‐arylindoles was developed. In the presence of BF3 ? OEt2 and palladium(II) acetate (Pd(OAc)2), N‐substituted indoles reacted with 1‐aryltriazenes in N,N‐dimethylacetamide (DMAC) to afford the corresponding aryl–indole‐type products in good to excellent yields.  相似文献   

9.
Two new orange red light‐emitting hyperbranched and linear polymers, poly(pyridine phenylene)s P1 and P2, were prepared by the Heck coupling reaction. In particular, an A2 + B3 approach was developed to synthesize conjugated hyperbranched polymer P2 via one‐pot polycondensation. The polymers were characterized by NMR, Fourier transform infrared, ultraviolet–visible, and elemental analysis. They showed excellent solubility in common solvents such as tetrahydrofuran, CH2Cl2, CHCl3, and N,N‐dimethylformamide and had high molecular weights (up to 6.1 × 105 and 5.8 × 105). Cyclic voltammetry studies revealed that P2 had a low‐lying lowest unoccupied molecular orbital energy level of ?3.22 eV and a highest occupied molecular orbital energy level of ?5.43 eV. The thin film of P2 emitted strong orange‐red photoluminescence at 595 nm. A double‐layer light‐emitting diode fabricated with the configuration of indium tin oxide/P2/tris(8‐hydroxy‐quinoline)aluminum/Al emitted orange‐red light at 599 nm, with a brightness of 662 cd/m2 at 7 V and a turn‐on voltage of 4.0 V; its external quantum efficiency was calculated to be 0.19% at 130.61 mA/cm2. This indicated that this new electroluminescent polymer (P2) based on 3,5‐dicyano‐2,4,6‐tristyrylpyridine could possibly be used as an orange‐red emitter in polymer light‐emitting displays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 493–504, 2005  相似文献   

10.
A copper‐catalyzed 8‐amide chelation‐induced remote C?H amination of quinolines has been developed. This direct amination with readily available azodicarboxylates proceeded with perfect C5‐regioselectivity offering amino‐substituted 8‐aminoquinolines, important bioactive molecular scaffolds, in very high yields (up to 96 %). A single‐electron transfer (SET)‐mediated mechanism with kH/kD=1.1 was proposed after trapping of the radical intermediate.  相似文献   

11.
A novel and practical strategy for the construction of imidazo[1,2‐a]pyridin‐2‐amine frameworks has been developed. The present sequential approach involves addition of arylamines to nitriles and I2/KI‐mediated oxidative C?N bond formation without purification of the intermediate amidines. This operationally simple synthetic process provides a facile access to a variety of new 2‐amino substituted imidazo[1,2‐a]pyridines and related heterocyclic compounds in an efficient and scalable fashion.  相似文献   

12.
The starting material O‐protected glycosyl isothiocyanate ( 1?3 ) was refluxed with 1,4‐diaminobenzene in CHCl3 under nitrogen atmosphere to give 1,4‐bis(N‐glycosyl)thioureidobenzene ( 4?6 ). Then 1,4‐bis[N‐(4/6‐substituted benzothiazole‐2‐yl)‐N′‐glycosylguanidino]benzenes ( 8a?8e , 9a?9e , 10a?10e ) were obtained in good yield by reaction of compounds ( 4?6 ) with 2‐amino‐4/6‐benzothizoles ( 7a?7e ) and HgCl2 in the presence of TEA in DMF. The structures of all 18 new compounds were confirmed by IR, 1H NMR, LC‐MS and elemental analysis. The bioactivity of anti‐HIV‐1 protease (HIV‐1 PR) and against angiotensin converting enzyme (ACE) have been evaluated.  相似文献   

13.
An efficient method for the preparation of 2‐substituted 4‐aryl‐4,5‐dihydro‐3,1‐benzoxazepine derivatives under mild conditions has been developed. The reaction of 2‐(2‐aminophenyl)ethanols 1 with acid chlorides in the presence of excess Et3N in THF at room temperature gave the corresponding N‐acylated intermediates 2 , which were dehydrated by treatment with POCl3 to give 2‐substituted 4‐aryl‐4,5‐dihydro‐3,1‐benzoxazepines 3 in a one‐pot reaction.  相似文献   

14.
A palladium‐catalyzed three‐component reaction between N‐tosylhydrazones, 2‐iodoanilines and atmospheric pressure CO2 was developed whereby a tandem carbene migration insertion/lactamization strategy afforded 4‐aryl‐2‐quinolinones in moderate to good yields. Notably, a wide range of functional groups were tolerated in this procedure. This protocol features the simultaneous formation of four novel bonds; two C?C, one C=C and one C?N (amide), representing an efficient methodology for incorporation of CO2 into heterocycles.  相似文献   

15.
A highly effective visible light‐promoted “radical‐type” coupling of N‐heteroarenes with aryldiazonium salts in water has been developed. The reaction proceeds at room temperature with [Ru(bpy)3]Cl2 ? 6 H2O as a photosensitizer and a commercial household light bulb as a light source. Pyridine and a variety of substituted pyridines are effective substrates under these reaction conditions, and only monosubstituted products are formed with different regioselectivities. Using aqueous formic acid as solvent, an array of xanthenes, thiazole, pyrazine, and pyridazine are compatible with this new arylation approach. The broad substrate scope, mild reaction conditions, and use of water as reaction solvent make this procedure a practical and environmentally friendly method for the synthesis of compounds containing aryl‐heteroaryl motifs.  相似文献   

16.
We describe here a novel procedure for the synthesis of highly substituted 2‐quinolinones. By this newly developed approach, 2‐quinolinone derivatives were prepared in moderate to good yields by carbonylative cyclization of N‐aryl‐pyridine‐2‐amines and internal alkynes by C?H activation. Remarkably, [Mo(CO)6] was applied as a solid CO source and the reaction proceeded in an atom economic manner.  相似文献   

17.
Various isoindolo[2,1‐a]quinazoline‐5,11‐dione derivatives 3 were synthesized in good yields by means of the reductive reaction of N‐substituted 2‐nitrobenzamides 1 and 2‐formylbenzoic acids 2 in the presence of SnCl2?2 H2O under reflux in EtOH (Scheme, Table). The procedure needed two steps, the reduction of the nitro group of the 2‐nitrobenzamide and ring closure by nucleophilic addition of the NH2 group to both the formyl and carboxylic acid C?O groups.  相似文献   

18.
A two‐step synthesis of 1‐substituted 3‐alkoxy‐1H‐isoindoles 4 has been developed. Thus, the reaction of 2‐(dialkoxymethyl)phenyllithium compounds, which are easily generated in situ by Br/Li exchange between 1‐bromo‐2‐(dialkoxymethyl)benzenes 1 and BuLi in THF at ?78°, with nitriles afforded [2‐(dialkoxymethyl)phenyl]methanimines 2 , which were treated with a catalytic amount of TsOH?H2O in refluxing CHCl3 to give the desired products in reasonable yields. Similarly, 3‐aryl‐1‐ethoxy‐1‐methyl‐1H‐isoindoles 7 have been prepared starting from 1‐bromo‐2‐(1,1‐diethoxyethyl)benzenes 5 .  相似文献   

19.
A convenient procedure for the preparation of a new type of thiophthalides, 3‐alkoxybenzo[c]thiophen‐1(3H)‐ones 4 and 9 has been developed. Thus, 1‐(dialkoxymethyl)‐2‐lithiobenzenes, generated by Br/Li exchange between 2‐bromo‐1‐(dialkoxymethyl)benzenes 1 and 6 , and BuLi, react with isothiocyanates to afford N‐substituted 2‐(dialkoxymethyl)benzothioamides 2 and 7 , which, on treatment with a catalytic amount of TsOH?H2O, give N‐substituted 3‐alkoxybenzo[c]thiophen‐1(3H)‐imines 3 and 8 . The latter are hydrolyzed under acidic conditions to the desired products 4 and 9 , respectively.  相似文献   

20.
Through the use of [Ru(bpy)3Cl2] (bpy=2,2′‐bipyridine) and [Ir(ppy)3] (ppy=phenylpyridine) as photocatalysts, we have achieved the first example of visible‐light photocatalytic radical alkenylation of various α‐carbonyl alkyl bromides and benzyl bromides to furnish α‐vinyl carbonyls and allylbenzene derivatives, prominent structural elements of many bioactive molecules. Specifically, this transformation is regiospecific and can tolerate primary, secondary, and even tertiary alkyl halides that bear β‐hydrides, which can be challenging with traditional palladium‐catalyzed approaches. The key initiation step of this transformation is visible‐light‐induced single‐electron reduction of C? Br bonds to generate alkyl radical species promoted by photocatalysts. The following carbon? carbon bond‐forming step involves a radical addition step rather than a metal‐mediated process, thereby avoiding the undesired β‐hydride elimination side reaction. Moreover, we propose that the Ru and Ir photocatalysts play a dual role in the catalytic system: they absorb energy from the visible light to facilitate the reaction process and act as a medium of electron transfer to activate the alkyl halides more effectively. Overall, this photoredox catalysis method opens new synthetic opportunities for the efficient alkenylation of alkyl halides that contain β‐hydrides under mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号