共查询到20条相似文献,搜索用时 15 毫秒
1.
Wooseup Hwang Jejoong Yoo In‐Chul Hwang Jiyeon Lee Young Ho Ko Hyun Woo Kim Younghoon Kim Yeonsang Lee Moon Young Hur Kyeng Min Park Jongcheol Seo Kangkyun Baek Kimoon Kim 《Angewandte Chemie (International ed. in English)》2020,59(9):3460-3464
Hierarchical self‐assembly of building blocks over multiple length scales is ubiquitous in living organisms. Microtubules are one of the principal cellular components formed by hierarchical self‐assembly of nanometer‐sized tubulin heterodimers into protofilaments, which then associate to form micron‐length‐scale, multi‐stranded tubes. This peculiar biological process is now mimicked with a fully synthetic molecule, which forms a 1:1 host‐guest complex with cucurbit[7]uril as a globular building block, and then polymerizes into linear poly‐pseudorotaxanes that associate laterally with each other in a self‐shape‐complementary manner to form a tubular structure with a length over tens of micrometers. Molecular dynamic simulations suggest that the tubular assembly consists of eight poly‐pseudorotaxanes that wind together to form a 4.5 nm wide multi‐stranded tubule. 相似文献
2.
Danielle E. Fagnani Michael J. Meese Jr. Dr. Khalil A. Abboud Prof. Dr. Ronald K. Castellano 《Angewandte Chemie (International ed. in English)》2016,55(36):10726-10731
[2.2]paracyclophane (pCp), unlike many π‐building blocks, has been virtually unexplored in supramolecular constructs. Reported here is the synthesis and characterization of the first pCp derivatives capable of programmed self‐assembly into extended cofacial π‐stacks in solution and the solid state. The design employs transannular (intramolecular) hydrogen bonds (H‐bonds), hitherto unstudied in pCps, between pseudo‐ortho‐positioned amides of a pCp‐4,7,12,15‐tetracarboxamide (pCpTA) to preorganize the molecules for intermolecular H‐bonding with π‐stacked neighbors. X‐ray crystallography confirms the formation of homochiral, one‐dimensional pCpTA stacks helically laced with two H‐bond strands. The chiral sense is dictated by the planar chirality (Rp or Sp) of the pCpTA monomers. A combination of NMR, IR, and UV/Vis studies confirms the formation of the first supramolecular pCp polymers in solution. 相似文献
3.
4.
Dr. Yasuyuki Yamada Prof. Dr. Tatsuhisa Kato Prof. Dr. Kentaro Tanaka 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(35):12371-12380
A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24‐crown‐8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear CuII complex, in which two CuII phthalocyanines were assembled on a metal‐free porphyrin template, revealed that two CuII phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S= spins in the ground state of the Cu2+ ions in the heterotrimer. 相似文献
5.
Virginie Russo Pauline Pieper Dr. Benoît Heinrich Dr. Bertrand Donnio Prof. Robert Deschenaux 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(48):17366-17376
Bis‐[60]fullerodendrimers were synthesized by assembling [60]fullerene‐containing type I (terminal olefin) and type II (α,β‐unsaturated carbonyl olefin) olefins through the olefin cross‐metathesis reaction. The synthetic modular approach developed in this study allowed the preparation of mono‐[60]fullerodendrimers and their [60]fullerene‐free analogues. First‐ and second‐generation poly(aryl ester) dendrons carrying cyanobiphenyl mesogens were used as liquid‐crystalline promoters. The liquid‐crystalline properties were studied by polarized optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering. In agreement with the nature and structure of the dendrimers, nematic, smectic, and multisegregated lamellar phases were observed. Owing to its versatility and tolerance towards many functional groups, olefin cross‐metathesis proved to be a reaction of choice for the elaboration of molecular materials with complex architectures. 相似文献
6.
Dr. Daniel Spitzer Dr. Vincent Marichez Georges J. M. Formon Prof. Dr. Pol Besenius Prof. Dr. Thomas M. Hermans 《Angewandte Chemie (International ed. in English)》2018,57(35):11349-11353
Controlling supramolecular growth at solid surfaces is of great importance to expand the scope of supramolecular materials. A dendritic benzene‐1,3,5‐tricarboxamide peptide conjugate is described in which assembly can be triggered by a pH jump. Stopped‐flow kinetics and mathematical modeling provide a quantitative understanding of the nucleation, elongation, and fragmentation behavior in solution. To assemble the molecule at a solid–liquid interface, we use proton diffusion from the bulk. The latter needs to be slower than the lag phase of nucleation to progressively grow a hydrogel outwards from the surface. Our method of surface‐assisted self‐assembly is generally applicable to other gelators, and can be used to create structured supramolecular materials. 相似文献
7.
The current buzzword in science and technology is self‐assembly and molecular self‐assembly is one of the most prominent fields as far as research in chemical and biological sciences is concerned. Generally, self‐assembly of molecules occurs through weak non‐covalent interactions like hydrogen bonding, π–π stacking, hydrophobic effects, etc. Inspired by many natural systems consisting of self‐assembled structures, scientists have been trying to understand their formation and mimic such processes in the laboratory to create functional “smart” materials, which respond to temperature, light, pH, electromagnetic field, mechanical stress, and/or chemical stimuli. These responses are usually manifested as remarkable changes from the molecular (e. g., conformational state, hierarchical order) to the macroscopic level (e. g., shape, surface properties). Many molecules such as peptides, viruses, and surfactants are known to self‐assemble into different structures. Among them, glycolipids are the new entries in the area of molecules that are being investigated for their self‐assembly characteristics. Among the different classes of glycolipids like rhamnolipids and trehalose lipids, owing to their biological preparations and their structural novelty, sophorolipids (SLs) are evoking greater interest among researchers. Sophorolipids are a class of asymmetric bolas bearing COOH groups at one end and sophorose (dimeric glucose linked by an unusual β(1→2) linkage). The extreme membrane stability of Archaea, attributed to the membrane‐spanning bolas (tetraether glycolipids), has inspired chemists to unravel the molecular designs that underpin the self‐assembly of bolaamphiphilic molecules. Apart from these self‐assembled structures, bolaamphiphiles find applications in many fields such as drug delivery, membrane mimicking, siRNA therapies, etc. The first part of this Personal Account presents some possible self‐assembled structures of bolaamphiphiles and their mechanism of formation. The later part covers our work on one of the typical bolaamphiphiles known as sophorolipids. 相似文献
8.
Li Luo Guanrong Nie Dr. Demei Tian Dr. Hongtao Deng Prof. Lei Jiang Prof. Haibing Li 《Angewandte Chemie (International ed. in English)》2016,55(41):12713-12716
The adhesion of herbicide droplets on leaf surfaces plays an important role in the herbicide's adsorption by crops. How to control the adhesive binding which occurs through dynamic self‐assembly between the macroscopic droplet and the surface is a challenging task. We introduce a host onto surfaces that controls the binding of guests in the paraquat droplets. The pillar[5]arene‐functional surface showed the selective binding of paraquat droplets via the host–guest interaction. The work is promising for improving the efficiency of herbicides. 相似文献
9.
Dr. Emilie Moulin Dr. Gad Fuks Prof. Dr. Mounir Maaloum Prof. Dr. Eric Buhler Prof. Dr. Nicolas Giuseppone 《Angewandte Chemie (International ed. in English)》2016,55(2):703-707
An acid–base switchable [c2]daisy chain rotaxane terminated with two 2,6‐diacetylamino pyridine units has been self‐assembled with a bis(uracil) linker. The complementary hydrogen‐bond recognition patterns, together with lateral van der Waals aggregations, result in the hierarchical formation of unidimensional supramolecular polymers associated in bundles of muscle‐like fibers. Microscopic and scattering techniques reveal that the mesoscopic structure of these bundles depends on the extended or contracted states that the rotaxanes show within individual polymer chains. The observed local dynamics span over several length scales because of a combination of supramolecular and mechanical bonds. This work illustrates the possibility to modify the hierarchical mesoscopic structuring of large polymeric systems by the integrated actuation of individual molecular machines. 相似文献
10.
We report tunable supramolecular self‐assemblies formed by water‐soluble pillar[n]arenes ( WPn s, n=5–7) and bipyridinium‐azobenzene guests. Nanoscale or microscale morphology of self‐assemblies in water was controlled by the host size of WPn . Supramolecular self‐assemblies could undergo morphology conversion under irradiation with UV light. 相似文献
11.
Aram Jeon Jintaek Gong Jun Kyun Oh Sunbum Kwon Wonchul Lee Sang Ouk Kim Sung June Cho Hee‐Seung Lee 《化学:亚洲杂志》2019,14(11):1945-1948
We present the formation of a nanobelt by self‐assembly of β‐benzyl GABA (γ‐aminobutyric acid). This simple γ‐amino acid building block self‐assembled to form a well‐defined nanobelt in chloroform. The nanobelt showed distinct optical properties due to π–π interactions. This new‐generation self‐assembled single amino acid may serve as a template for functional nanomaterials. 相似文献
12.
Dr. Tushar Satav Dr. Peter Korevaar Dr. Tom F. A. de Greef Prof. Jurriaan Huskens Prof. Pascal Jonkheijm 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(36):12675-12679
The modulation of the hierarchical nucleated self‐assembly of tri‐β3‐peptides has been studied. β3‐Tyrosine provided a handle to control the assembly process through host‐guest interactions with CB[7] and CB[8]. By varying the cavity size from CB[7] to CB[8] distinct phases of assembling tri‐β3‐peptides were arrested. Given the limited size of the CB[7] cavity, only one aromatic β3‐tyrosine can be simultaneously hosted and, hence, CB[7] was primarily acting as an inhibitor of self‐assembly. In strong contrast, the larger CB[8] can form a ternary complex with two aromatic amino acids and hence CB[8] was acting primarily as cross‐linker of multiple fibers and promoting the formation of larger aggregates. General insights on modulating supramolecular assembly can lead to new ways to introduce functionality in supramolecular polymers. 相似文献
13.
Dr. Edward A. Neal Dr. Stephen M. Goldup 《Angewandte Chemie (International ed. in English)》2016,55(40):12488-12493
In this proof‐of‐concept study, an active‐template coupling is used to demonstrate a novel kinetic self‐sorting process. This process iteratively increases the yield of the target heterocircuit [3]rotaxane product at the expense of other threaded species. 相似文献
14.
Daiki Inamori Dr. Hiroshi Masai Dr. Takashi Tamaki Prof. Dr. Jun Terao 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(15):3385-3389
Systematic investigation of rotaxane structures has revealed a rational design for thermally driven switching of their macroscopic properties. At low temperature, the luminophore is insulated by the macrocycles and displays monomer emission, whereas at high temperature, the luminophore is exposed owing to a change in the macrocyclic location distribution and interacts with external molecules, affording a thermally driven luminescent color change with high reversibility and responsiveness. This macroscopic switching through efficient thermal sliding was made possible by appropriate tuning of both the macrocycle–luminophore interactions within the rotaxane and the coupling between the excited luminophore and external molecules in an exciplex. The ability to switch properties by a simple and clean thermal stimuli should expand the utilization of rotaxanes as components of thermally driven molecular systems. 相似文献
15.
End‐to‐End Self‐Assembly of Semiconductor Nanorods in Water by Using an Amphiphilic Surface Design 下载免费PDF全文
Yuki Taniguchi Takao Takishita Prof. Tsuyoshi Kawai Dr. Takuya Nakashima 《Angewandte Chemie (International ed. in English)》2016,55(6):2083-2086
One‐dimensional (1D) self‐assemblies of nanocrystals are of interest because of their vectorial and polymer‐like dynamic properties. Herein, we report a simple method to prepare elongated assemblies of semiconductor nanorods (NRs) through end‐to‐end self‐assembly. Short‐chained water‐soluble thiols were employed as surface ligands for CdSe NRs having a wurtzite crystal structure. The site‐specific capping of NRs with these ligands rendered the surface of the NRs amphiphilic. The amphiphilic CdSe NRs self‐assembled to form elongated wires by end‐to‐end attachment driven by the hydrophobic effect operating between uncapped NR ends. The end‐to‐end assembly technique was further applied to CdS NRs and CdSe tetrapods (TPs) with a wurtzite structure. 相似文献
16.
Active Esters as Pseudostoppers for Slippage Synthesis of [2]Pseudorotaxane Building Blocks: A Straightforward Route to Multi‐Interlocked Molecular Machines 下载免费PDF全文
Dr. Thibaut Legigan Benjamin Riss‐Yaw Dr. Caroline Clavel Dr. Frédéric Coutrot 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(26):8835-8847
The efficient synthesis and very easy isolation of dibenzo[24]crown‐8‐based [2]pseudorotaxane building blocks that contain an active ester motif at the extremity of the encircled molecular axle and an ammonium moiety as a template for the dibenzo[24]crown‐8 is reported. The active ester acts both as a semistopper for the [2]pseudorotaxane species and as an extensible extremity. Among the various investigated active ester moieties, those that allow for the slippage process are given particular focus because this strategy produces fewer side products. Extension of the selected N‐hydroxysuccinimide ester based pseudorotaxane building block by using either a mono‐ or a diamino compound, both containing a triazolium moiety, is also described. These provide a pH‐dependent two‐station [2]rotaxane molecular machine and a palindromic [3]rotaxane molecular machine, respectively. Molecular machinery on both interlocked compounds through variation of pH was studied and characterized by means of NMR spectroscopy. 相似文献
17.
Young Ho Song Dr. Nem Singh Dr. Jaehoon Jung Dr. Hyunuk Kim Eun‐Hee Kim Dr. Hae‐Kap Cheong Dr. Yousoo Kim Prof. Ki‐Whan Chi 《Angewandte Chemie (International ed. in English)》2016,55(6):2007-2011
A molecular Solomon link was synthesized in high yield through the template‐free, coordination‐driven self‐assembly of a carbazole‐functionalized donor and a tetracene‐based dinuclear ruthenium(II) acceptor. The doubly interlocked topology was realized by a strategically chosen ligand which was capable of participating in multiple CH ??? π and π–π interactions, as evidenced from single‐crystal X‐ray analysis and computational studies. This method is the first example of a two‐component self‐assembly of a molecular Solomon link using a directional bonding approach. The donor alone was not responsible for the construction of the Solomon link, and was confirmed by its noncatenane self‐assemblies obtained with other similar ruthenium(II) acceptors. 相似文献
18.
The last decade has witnessed rapid developments in aggregation‐induced emission (AIE). In contrast to traditional aggregation, which causes luminescence quenching (ACQ), AIE is a reverse phenomenon that allows robust luminescence to be retained in aggregated and solid states. This makes it possible to fabricate various highly efficient luminescent materials, which opens new paradigms in a number of fields, such as imaging, sensing, medical therapy, light harvesting, light‐emitting devices, and organic electronic devices. Of the various important features of AIE molecules, their self‐assembly behavior is very attractive because the formation of a well‐defined emissive nanostructure may lead to advanced applications in diverse fields. However, due to the nonplanar topology of AIEgens, it is not easy for them to self‐assemble into well‐defined structures. To date, some strategies have been proposed to achieve the self‐assembly of AIEgens. Herein, we summarize the most recent approaches for the self‐assembly of AIE molecules. These approaches can be sorted into two classes: 1) covalent molecular design and 2) noncovalent supramolecular interactions. We hope this will inspire more excellent work in the field of AIE. 相似文献
19.
《Angewandte Chemie (International ed. in English)》2017,56(41):12518-12522
The newly developed oligophenylenevinylene (OPV)‐based fluorescent (FL) chiral chemosensor (OPV‐Me) for the representative enantiomeric guest, 1,2‐cyclohexanedicarboxylic acid (1,2‐CHDA: RR ‐ and SS ‐form) showed the high chiral discrimination ability, resulting in the different aggregation modes of OPV‐Me self‐assembly: RR ‐CHDA directed the fibrous supramolecular aggregate, whereas SS ‐CHDA directed the finite aggregate. The consequent FL intensity toward RR ‐CHDA was up to 30 times larger than that toward SS ‐CHDA. Accordingly, highly enantioselective recognition was achieved. Application to the chirality sensing was also possible: OPV‐Me exhibited a linear relationship between the FL intensity and the enantiomeric excess through the morphological development of stereocomplex aggregates. These results clearly show that the chiral recognition ability is manifested by the amplification cascade of the chirality difference through self‐assembly. 相似文献
20.
Cooperative Self‐Assembly of a Quaternary Complex Formed by Two Cucurbit[7]uril Hosts,Cyclobis(paraquat‐p‐phenylene), and a “Designer” Guest 下载免费PDF全文
Dr. Mohammad Hossein Tootoonchi Gaurav Sharma Jonathan Calles Prof. Dr. Rajeev Prabhakar Prof. Dr. Angel E. Kaifer 《Angewandte Chemie (International ed. in English)》2016,55(38):11507-11511
The self‐assembly in aqueous solution of the well‐known cyclophane, cyclobis(paraquat‐p‐phenylene) (BB4+), and two cucurbit[7]uril (CB7) hosts around a simple hydroquinol‐based, diamine guest (GH22+) was investigated by 1H NMR and electronic absorption spectroscopies, electrospray mass spectrometry and DFT computations. The formation of a quaternary supramolecular assembly [GH22+?BB4+? (CB7)2] was shown to be a very efficient process, which takes place not only because of the attractive forces between each of the hosts and the guest, but also because of the lateral interactions between the hosts in the final assembly. This complementary set of attractive interactions results in clear cooperative binding effects that help overcome the entropic barriers for multiple component assembly. 相似文献