首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ketal‐substituted bridged azobenzenes have been synthesized; these display a symmetrical boat conformation with the ketal in pseudo‐equatorial positions. These bridged Z‐azobenzenes (Z1) readily photoisomerize to the E‐isomer as well as another Z‐conformer (Z2) with ketal function on the pseudo‐axial position upon irradiation at 406 nm. The two diastereomeric conformers display distinct physicochemical characteristics. Spectroscopic and NMR investigations supported that interconversion of two conformers occurs via the E‐isomer, with good photochemical quantum yield (Φ =0.45±0.03, Φ =0.33±0.05, Φ =0.37±0.06 and Φ =0.36±0.04). The system shows high photostability and no thermal equilibrium between the two stable Z1 and Z2 conformers.  相似文献   

2.
The complexes [MCl2(TzH)4] (M=Mn ( 1 ), Fe ( 2 ); TzH=1,2,4‐1H‐triazole) and [ZnCl2(TzH)2] ( 3 ) have been obtained by mechanochemical reactions of the corresponding divalent metal chloride and 1,2,4‐1H‐triazole. They were successfully used as precursors for the formation of coordination polymers either by a microwave‐assisted reaction or by thermal conversion. For manganese, the conversion directly yielded [MnCl2TzH] ( 4 ), whereas for the iron‐containing precursor, [FeCl2TzH] ( 6 ), was formed via the intermediate coordination polymer [FeCl(TzH)2]Cl ( 5 ). For cobalt, the isotypic polymer [CoCl(TzH)2]Cl ( 7 ) was obtained, but exclusively by a microwave‐induced reaction directly from CoCl2. The crystal structures were resolved from single crystals and powders. The dielectric properties were determined and revealed large differences in permittivity between the precursor complexes and the rigid chain‐like coordination polymers. Whereas the monomeric complexes exhibit very different dielectric behaviour, depending on the transition metal, from “low‐k” to “high‐k” with the permittivity ranging from 4.3 to >100 for frequencies of up to 1000 Hz, the coordination polymers and complexes with strong intermolecular interactions are all close to “low‐k” materials with very low dielectric constants up to 50 °C. Therefore, the conversion procedures can be used to deliberately influence the dielectric properties from complex to polymer and for different 3d transition‐metal ions.  相似文献   

3.
Golden fullerenes have recently been identified by photoelectron spectra by Bulusu et al. [S. Bulusu, X. Li, L.‐S. Wang, X. C. Zeng, PNAS 2006 , 103, 8326–8330]. These unique triangulations of a sphere are related to fullerene duals having exactly 12 vertices of degree five, and the icosahedral hollow gold cages previously postulated are related to the Goldberg–Coxeter transforms of C20 starting from a triangulated surface (hexagonal lattice, dual of a graphene sheet). This also relates topologically the (chiral) gold nanowires observed to the (chiral) carbon nanotubes. In fact, the Mackay icosahedra well known in gold cluster chemistry are related topologically to the dual halma transforms of the smallest possible fullerene C20. The basic building block here is the (111) fcc sheet of bulk gold which is dual to graphene. Because of this interesting one‐to‐one relationship through Euler's polyhedral formula, there are as many golden fullerene isomers as there are fullerene isomers, with the number of isomers Niso increasing polynomially as ). For the recently observed , , and we present simulated photoelectron spectra including all isomers. We also predict the photoelectron spectrum of . The stability of the golden fullerenes is discussed in relation with the more compact structures for the neutral and negatively charged Au12 to Au20 and Au32 clusters. As for the compact gold clusters we observe a clear trend in stability of the hollow gold cages towards the (111) fcc sheet. The high stability of the (111) fcc sheet of gold compared to the bulk 3D structure explains the unusual stability of these hollow gold cages.  相似文献   

4.
The physicochemical properties of cationic dioxa ( 1 ), azaoxa ( 2 ), and diaza ( 3 ) [6]helicenes demonstrate a much higher chemical stability of the diaza adduct 3 (pKR+=20.4, =?0.72 V) compared to its azaoxa 2 (pKR+=15.2, =?0.45 V) and dioxa 1 (pKR+=8.8, =?0.12 V) analogues. The fluorescence of these cationic chromophores is established, and ranges from the orange to the far‐red regions. From 1 to 3 , a bathochromic shift of the lowest energy transitions (up to 614 nm in acetonitrile) and an enhancement of the fluorescence quantum yields and lifetimes (up to 31 % and 9.8 ns, respectively, at 658 nm) are observed. The triplet quantum yields and circularly polarized luminescence are also reported. Finally, fine tuning of the optical properties of the diaza [6]helicene core is achieved through selective and orthogonal post‐functionalization reactions (12 examples, compounds 4 – 15 ). The electronic absorption is modulated from the orange to the far‐red spectral range (560–731 nm), and fluorescence is observed from 591 to 755 nm with enhanced quantum efficiency up to 70 % (619 nm). The influence of the peripheral auxochrome substituents is rationalized by first‐principles calculations.  相似文献   

5.
Sesquiterpenes are constituents of a variety of essential oils that are used in flavorings, perfumes, personal care, and cleaning products. Two sesquiterpenes that are commonly used as indoor fragrances are valencene and farnesol. Knowing the reaction rate constants of these chemicals with ozone (O3) and nitrate radical () is an important factor in determining their fate indoors. In this study, the bimolecular rate constants of , , , and were measured using the relative rate technique at 297 ± 3 K and 1 atm total pressure. Using the rate constants reported here and measured/modeled indoor concentrations of O3 and (20 ppb and 1 ppt, respectively), pseudo–first‐order‐rate lifetimes , , , and were determined.  相似文献   

6.
The tridiagonal J‐matrix approach has been used to calculate the low and moderately high‐lying eigenvalues of the rotating shifted Tietz–Hua (RSTH) oscillator potential. The radial Schrödinger equation is solved efficiently by means of the diagonalization of the full Hamiltonian matrix, with the Laguerre or oscillator basis. Ro–vibrational bound state energies for 11 diatomic systems, namely , , , NO, CO, , , , , , and NO+, are calculated with high accuracy. Some of the energy states for molecules are reported here for the first time. The results of the last four molecules have been introduced for the first time using the oscillator basis. Higher accuracy is achieved by calculating the energy corresponding to the poles of the S‐matrix in the complex energy plane using the J‐matrix method. Furthermore, the bound states and the resonance energies for the newly proposed inverted Tietz–Hua IRSTH‐potential are calculated for the H2‐molecule with scaled depth. A detailed analysis of variation of eigenvalues with n, quantum numbers is made. Results are compared with literature data, wherever possible. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Trifluoropropylmethylsiloxane–phenylmethylsiloxane gradient copolysiloxanes were synthesized by anionic and cationic ring‐opening polymerization (ROP) of 1,3,5‐tris(trifluoropropylmethyl)cyclotrisiloxane ( ) and phenylmethylcyclotrisiloxane ( ). The analysis of reactivity ratios revealed that the reactivity of toward anionic ROP was higher than that of ; however, exhibited lower reactivity compared with during the cationic ROP. AB and BAB type gradient copolymers were obtained because of a difference in the reactivity of the monomers. The microstructure of copolymers was characterized by 29Si NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry. Furthermore, the mechanism for kinetics inverse of copolymerization was proposed based on the results of the optimized molecular configuration. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 835–843  相似文献   

8.
Forward and backward electron/proton ionization/dissociation spectra from one‐dimensional non‐Born‐Oppenheimer H2 molecule exposed to ultrashort intense laser pulses ( W/cm2, λ = 800 nm) have been computed by numerically solving the time‐dependent Schrödinger equation. The resulting above‐threshold ionization and above‐threshold dissociation spectra exhibit the characteristic forward‐backward asymmetry and sensitivity to the carrier‐envelope phase (CEP), particularly for high energies. A general framework for understanding CEP effects in the asymmetry of dissociative ionization of H2 has been established. It is found that the symmetry breaking of electron‐proton distribution with π periodic modulation occurs for all CEPs except for ( integer) and the largest asymmetry coming from the CEP of . At least one of the electron and proton distributions is asymmetric when measured simultaneously. Inspection of the nuclear and electron wave packet dynamics provides further information about the relative contribution of the gerade and ungerade states of to the dissociation channel and the time delay of electrons in asymmetric ionization. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Ru(II) complexes of the general formula [RuCl2(′′)(L)] (1: ′N = Nb, L = MeOH; 2: ′N = Nb, L = CH3CN; 3: ′N = Nd, L = CH3CN; 4: ′N = Np, L = CH3CN), [Ru(p‐cymene)(a–b)Cl]Cl (5a: N Na = 2,2′‐bipyridine; 5b: N Nb = 4,4′‐dimethyl–2,2′‐bipyridine), [Ru(′′)(a–b)Cl]Cl (6a: ′N = Nb, a = 2,2′‐bipyridine; 6b: ′N = Nb, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 7a: ′N = Nd, a = 2,2′‐bipyridine; 7b: ′N = Nd, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 8a: ′N = Np, a = 2,2′‐bipyridine; 8b: ′N = Np, b = 4,4′‐dimethyl‐2,2′‐bipyridine) and [Ru(′′)(a)Cl]BF4 (9a: ′N = Nb; a = 2,2′‐bipyridine) were synthesized from the corresponding [RuCl2(p‐cymene)]2 dimer, ′′ and a–b ligands. The compounds were characterized by elemental analysis, IR and NMR. Complex 9a was studied by X‐ray diffraction, confirming its cationic‐mononuclear [RuCl(bb)(a)]+ nature. The synthesized Ru(II) complexes (1–8) were employed as catalysts for the transfer hydrogenation of ketones to secondary alcohols in the presence of KOH using 2‐propanol as a hydrogen source at 82°C. The rates of the transfer hydrogenation reactions strongly depended on the type of and ancillary ligands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The benzene‐benzene (Bz‐Bz) interaction is present in several chemical systems and it is known to be crucial in understanding the specificity of important biological phenomena. In this work, we propose a novel Bz‐Bz analytical potential energy surface which is fine‐tuned on accurate ab initio calculations in order to improve its reliability. Once the Bz‐Bz interaction is modeled, an analytical function for the energy of the clusters may be obtained by summing up over all pair potentials. We apply an evolutionary algorithm (EA) to discover the lowest‐energy structures of clusters (for ), and the results are compared with previous global optimization studies where different potential functions were employed. Besides the global minimum, the EA also gives the structures of other low‐lying isomers ranked by the corresponding energy. Additional ab initio calculations are carried out for the low‐lying isomers of and clusters, and the global minimum is confirmed as the most stable structure for both sizes. Finally, a detailed analysis of the low‐energy isomers of the n = 13 and 19 magic‐number clusters is performed. The two lowest‐energy isomers show S6 and C3 symmetry, respectively, which is compatible with the experimental results available in the literature. The structures reported here are all non‐symmetric, showing two central Bz molecules surrounded by 12 nearest‐neighbor monomers in the case of the five lowest‐energy structures. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The orientational order parameter is one of the most important quantities to describe the degree of long‐range orientational ordering of liquid crystals. There are several approaches to experimentally measure this order parameter of liquid crystalline phases but every method includes substantial simplifications and assumptions. We present a simulation‐based approach to elucidate the reliability of the method of Davidson, Petermann and Levelut to measure via 2D X‐ray experiments. We have found that this method slightly underestimates by an absolute value of only 0.05 and thus provides reliable measures of by X‐ray diffraction.  相似文献   

12.
A theoretical procedure has been developed and implemented to calculate the optical rotation of chiral molecules in ordered phase via origin‐independent diagonal components , of the optical activity tensor and origin‐independent components , for , of the mixed electric dipole‐electric quadrupole polarizability. Origin independence was achieved by referring these tensors to the principal axis system of the electric dipole dynamic polarizability at the same laser frequency ω. The approach has been applied, allowing for alternative quantum mechanical methods based on different gauges, to estimate near Hartree–Fock values for three chiral molecules, (2R)‐N‐methyloxaziridine C2NOH5, (2R)‐2‐methyloxirane (also referred to as propylene oxide) C3OH6, and ( )‐1,3‐dimethylallene C5H8, at two frequencies. The theoretical predictions can be useful for an attempt at measuring correspondent experimental values in crystal phase. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
This study probes the nature of noncovalent interactions, such as cation–π, metal ion–lone pair (M–LP), hydrogen bonding (HB), charge‐assisted hydrogen bonding (CAHB), and π–π interactions, using energy decomposition schemes—density functional theory (DFT)–symmetry‐adapted perturbation theory and reduced variational space. Among cation–π complexes, the polarization and electrostatic components are the major contributors to the interaction energy (IE) for metal ion–π complexes, while for onium ion–π complexes ( , , , and ) the dispersion component is prominent. For M–LP complexes, the electrostatic component contributes more to the IE except the dicationic metal ion complexes with H2S and PH3 where the polarization component dominates. Although electrostatic component dominates for the HB and CAHB complexes, dispersion is predominant in π–π complexes.Copyright © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Lanthanide complexes of tetrapicolyl cyclen displayed remarkably high affinities for fluoride (log K≈5) in water, and were shown to form 1:1 complexes. The behaviour of these systems can be rationalised by changes to the magnitude of the crystal‐field parameter, . However, such changes are not invariably accompanied by a change in sign of this parameter: for early lanthanides, the N8 donor set with a coordinated axial water molecule ensures that the magnetic anisotropy has the opposite sense to that observed in the analogous dehydrated lanthanide complexes.  相似文献   

15.
It is known that the eletroosmotic (EO) flow rate through a nano‐scale channel is extremely small. A channel made of a periodic array of slats is proposed to effectively promote the EO pumping, and thus greatly improve the EO flow rate. The geometrically simple array is complicated enough that four length scales are involved: the vertical period 2L, lateral period 2aL, width of the slat 2cL as well as the Debye length . The EO pumping rate is determined by the normalized lengths: a, c, or the perforation fraction of slats and the dimensionless electrokinetic width . In a nano‐scale channel, K is of order unity or less. EO pumping in both longitudinal and transverse directions (denoted as longitudinal EO pumping (LEOP) and transverse EO pumping (TEOP), respectively) is investigated by solving the Debye–Hückel approximation and viscous electro‐kinetic equation. The main findings include that (i) the EO pumping rates of LEOP for small K are remarkably improved (by one order of magnitude) when we have longer slats () and a large perforation fraction of slats (η > 0.7); (ii) the EO pumping rates of TEOP for small K can also be much improved but less significantly with longer slats and a large perforation fraction of slats. Nevertheless, it must be noted that in practice K cannot be made arbitrarily small as the criterion of for the reference potential at the channel center put lower bounds on K; in other words, there are geometrical limits for the use of the Poisson–Boltzmann equation.  相似文献   

16.
Recently, it has been demonstrated that the domain‐averaged exchange‐correlation energies, Vxc, are capable of tracing the covalent character of atom–atom interactions unequivocally and thus pave the way for detailed bonding analysis within the context of the quantum theory of atoms in molecules (QTAIM) [M. García‐Revilla, E. Francisco, P. L. Popelier, A. Martín Pendás, ChemPhysChem 2013 , 14, 1211–1218]. Herein, the concept of Vxc is extended within the context of the newly developed multicomponent QTAIM (MC‐QTAIM). The extended version, , is capable of analyzing nonadiabatic wavefunctions and thus is sensitive to the mass of nuclei and can trace “locally” the subtle electronic variations induced by isotope substitution. To demonstrate this capability in practice, ab initio nonadiabatic wavefunctions for three isotopically substituted hydrogen cyanide molecules, in which the hydrogen nucleus was assumed to be a proton, deuterium, or tritium, were derived. The resulting wavefunctions were then used to compute and it emerged that for the hydrogen–carbon bond, the was distinct for each isotopic composition and varied in line with chemical expectations. Indeed, the introduction of paves the way for the investigation of vast numbers of structural and kinetic isotope effects within the context of the MC‐QTAIM.  相似文献   

17.
The photodetachment of hydrogen negative ion near different inelastic surfaces is investigated by the semiclassical closed orbit theory for arbitrary laser polarization direction . A two‐term formula of photodetachment cross section consisting of a smooth background term and an oscillatory term is derived. The oscillatory term contains an extra angular factor that describes the dependence of oscillations in total cross section on the laser polarization direction. It is observed that the amplitude of oscillations in cross section reaches maximum at when laser polarization is parallel to the z‐axis and it approaches zero as the laser polarization direction becomes perpendicular to the z‐axis. It is also observed that as the reflection coefficient , which accounts for the inelastic behavior of the surfaces, increases the amplitude of oscillation also increases. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
We perform high‐coordination three‐dimensional (3D) lattice simulations of a single chain of N monomers embedded in matrices of quenched chains, at different concentrations ρ, using pruned‐enriched Rosenbluth sampling. The partition function is well‐described by the expression, , where is a universal constant, and is the concentration dependent lattice connectivity constant. For sufficiently long chains, , we find that the radius of gyration R varies nonmonotonically with ρ; R decreases gradually from its unperturbed dimensions R0 until , after which it increases relatively rapidly due to repulsion between monomers. Motivated by the similarity in the shape of the curves, and results on Gaussian chains, we successfully superpose all the simulation data onto a single master curve. Finally, we test the relationship , suggested by a Flory‐type scaling model, where ρc is the critical percolation threshold, and is a universal constant. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1611–1619  相似文献   

19.
The results of a study devoted to the electronic spectroscopy of gaseous, solid, and cryogenic matrix‐isolated methylcyanodiacetylene (CH3C5N) are reported. UV absorption and optical phosphorescence spectra of the compound are described here for the first time, and the corresponding vibronic assignments are proposed. UV absorption, studied directly or through the excitation of phosphorescence, revealed the 1E‐ 1A1 system, very weak 1A21A1 bands, and a strong, broad absorption feature, tentatively identified as 1E– 1A1. Spectral measurements were assisted by quantum chemical calculations at the DFT and ab initio (coupled cluster) levels of theory.  相似文献   

20.
In the presence of a static, nonhomogeneous magnetic field, represented by the axial vector at the origin of the coordinate system and by the polar vector , assumed to be spatially uniform, the chiral molecules investigated in this paper carry an orbital electronic anapole, described by the polar vector . The electronic interaction energy of these molecules in nonordered media is a cross term, coupling and via , one third of the trace of the anapole magnetizability aαβ tensor, that is, . Both and WBC have opposite sign in the two enantiomeric forms, a fact quite remarkable from the conceptual point of view. The magnitude of predicted in the present computational investigation for five chiral molecules is very small and significantly biased by electron correlation contributions, estimated at the density functional level via three different functionals. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号