首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B(C6F5)2‐containing boryldienes 4 underwent the addition of two molar equivalents of TEMPO to give N,O‐bonded four‐membered heterocyclic products 7 . The reaction is a metal‐free example of the generation of reactive nitrogen‐centered TEMPO radical derivatives, in this case by the addition of TEMPO to the borane, followed by carbon–nitrogen bond formation and subsequent trapping of the resulting allyl radical by the second equivalent of TEMPO.  相似文献   

2.
The radical polymerization of 1,3‐butadiene initiated by hydrogen peroxide and controlled by TEMPO is presented. Various parameters (e.g., the temperature and the [TEMPO]o/[H2O2]o initial molar ratio, γo), were studied to optimize the reaction. It was observed that the higher the temperature, the higher the yield, with optimal yields noted for γo = 0.10 with high molecular weights and broad polydispersity indexes. In addition, the kinetics of radical polymerization showed a decrease (by one order of magnitude) of the macroradical concentration all along the reaction. The ln [butadiene]/[butadiene]o increased relative to time and behaved linearly after 90 min. Further, the concentration of free TEMPO was ≈1000 times lower than the initial concentration, in good agreement with the decoloring of the medium. Thus a quasi‐living behavior of butadiene was noted from this system. Finally, the hydrolysis of these oligomers, either in the presence of zinc or thermally by means of a thin‐layer evaporator under vacuum allowed the production of telechelic hydroxy polybutadienes, the second technique enabling the obtaining of higher molecular weights by coupling and the recovery of TEMPO. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3293–3302, 2000  相似文献   

3.
Chemical single‐electron reduction of 1‐mesityl‐2,3,4,5‐tetraphenylborole ( 3 ) gave a stable radical anion [CoCp*2][ 3 ] as shown in earlier investigations. Herein, we present the reaction of [CoCp*2][ 3 ] with the 2,2,6,6‐tetramethylpiperidine‐N‐oxyl radical (TEMPO), a common radical trap. Instead of radical recombination, the reaction proceeds through a redox pathway involving oxidation of the borole radical anion combined with reduction of TEMPO. This electron‐transfer process is accompanied by a deprotonation reaction of the cobaltocenium counterion by the base TEMPO? to give TEMPO‐H and a neutral cobalt(I) fulvene complex ( 7 ). The latter was not observed directly during the reaction, because it instantaneously reacts as a nucleophile attacking at the boron center of the in situ generated borole 3 to give the borate 6 . However, 7 was synthesized independently by deprotonation of [CoCp*2][PF6]. In addition, the obtained zwitterionic cobaltocenium borate 6 undergoes a photolytic rearrangement to form the borata‐alkene derivative 9 that thermally transforms to the chiral cobaltocenium borate 12 . Our investigations are based on spectroscopic evidence, X‐ray crystallography, elemental analysis, as well as DFT calculations.  相似文献   

4.
We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5‐dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical‐based, redox pathway involves the homolytic cleavage of H2, in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.  相似文献   

5.
In this article, we offer clear evidence for the radical copolymerizability of porphyrin rings in 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated radical copolymerizations with styrene. The radical copolymerizations of styrene with 5,10,15,20‐tetrakis(pentafluorophenyl)porphyrin (H2TFPP) was conducted using 1‐phenyl‐1‐(2,2,6,6‐tetramethyl‐1‐piperidinyloxy)ethane as an initiator. The refractive index (RI) traces for the size‐exclusion chromatography of the resulting copolymers were unimodal with narrow molecular weight distributions. The RI traces shifted toward higher molecular weight regions as the polymerization progressed, and the number‐average molecular weights were close to those calculated on the basis of the feed compositions and monomer conversions. These features were in good agreement with a TEMPO‐mediated mechanism. The traces recorded by the ultraviolet‐visible (UV‐vis) detector (430 nm) were identical to those obtained by the RI detector, indicating a statistical copolymerization of styrene with H2TFPP. This also indicated that H2TFPP acted as a monomer and not as a terminator or a chain‐transfer agent under the conditions used. A benzyl radical addition to H2TFPP was conducted as a model reaction for the copolymerization using tributyltin hydride as a chain‐transfer agent, affording a reduced porphyrin, 2‐benzyl‐5,10,15,20‐tetrakis(pentafluorophenyl)chlorin 1 , via radical addition to the β‐pyrrole position. The UV‐vis spectrum of 1 was fairly similar to that of poly(styrene‐co‐H2TFPP), indicating that H2TFPP polymerized at its β‐pyrrole position in the TEMPO‐mediated radical polymerization. TEMPO‐mediated radical copolymerizations of styrene with several porphyrin derivatives were also demonstrated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Frustrated Lewis pairs (FLPs) are well known for their ability to activate small molecules. Recent reports of radical formation within such systems indicate single-electron transfer (SET) could play an important role in their chemistry. Herein, we investigate radical formation upon reacting FLP systems with dihydrogen, triphenyltin hydride, or tetrachloro-1,4-benzoquinone (TCQ) both experimentally and computationally to determine the nature of the single-electron transfer (SET) events; that is, being direct SET to B(C6F5)3 or not. The reactions of H2 and Ph3SnH with archetypal P/B FLP systems do not proceed via a radical mechanism. In contrast, reaction with TCQ proceeds via SET, which is only feasible by Lewis acid coordination to the substrate. Furthermore, SET from the Lewis base to the Lewis acid–substrate adduct may be prevalent in other reported examples of radical FLP chemistry, which provides important design principles for radical main-group chemistry.  相似文献   

7.
The gas‐phase free radical initiated peptide sequencing (FRIPS) fragmentation behavior of o‐TEMPO‐Bz‐conjugated peptides with an intra‐ and intermolecular disulfide bond was investigated using MSn tandem mass spectrometry experiments. Investigated peptides included four peptides with an intramolecular cyclic disulfide bond, Bactenecin (RLC RIVVIRVC R), TGF‐α (C HSGYVGVRC ), MCH (DFDMLRC MLGRVFRPC WQY) and Adrenomedullin (16–31) (C RFGTC TVQKLAHQIY), and two peptides with an intermolecular disulfide bond. Collisional activation of the benzyl radical conjugated peptide cation, which was generated through the release of a TEMPO radical from o‐TEMPO‐Bz‐conjugated peptides upon initial collisional activation, produced a large number of peptide backbone fragments in which the S? S or C? S bond was readily cleaved. The observed peptide backbone fragments included a‐, c‐, x‐ or z‐types, which indicates that the radical‐driven peptide fragmentation mechanism plays an important role in TEMPO‐FRIPS mass spectrometry. FRIPS application of the linearly linked disulfide peptides further showed that the S? S or C? S bond was selectively and preferentially cleaved, followed by peptide backbone dissociations. In the FRIPS mass spectra, the loss of ?SH or ?SSH was also abundantly found. On the basis of these findings, FRIPS fragmentation pathways for peptides with a disulfide bond are proposed. For the cleavage of the S? S bond, the abstraction of a hydrogen atom at Cβ by the benzyl radical is proposed to be the initial radical abstraction/transfer reaction. On the other hand, H‐abstraction at Cα is suggested to lead to C? S bond cleavage, which yields [ion ± S] fragments or the loss of ?SH or ?SSH. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Dendritic multifunctional macroinitiators having 12 TEMPO‐based alkoxyamines were prepared by the reaction of a benzyl alcohol having 4 TEMPO‐based alkoxyamines with 1,3,5‐tris[(4‐chlorocarbonyl)phenyl]benzene and 1,3,5‐tris(4‐isocyanatophenyl)benzene. Using the dodecafunctional macroinitiators, TEMPO‐mediated radical polymerizations of styrene (St) were carried out at 120 °C, and 12‐arm star polymers ( star‐12 ) with narrow polydispersities of Mw/Mn = 1.06–1.26 were obtained. To evaluate the livingness for the TEMPO‐mediated radical polymerizations of St, hydrolysis of the ester bonds of the 12‐arm star polymers and subsequent SEC measurements were carried out. Furthermore, using star‐12 as the macroinitiator, TEMPO‐mediated radical polymerization of 4‐vinylpyridine (4‐VP) was carried out, and well‐defined poly(St)‐b‐poly(4‐VP) 12‐arm star diblock copolymers with Mw/Mn = 1.18–1.19 were obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3689–3700, 2005  相似文献   

9.
Allen  A. D.  Rangwala  H.  Saidi  K.  Tidwell  Th. T.  Wang  J. 《Russian Chemical Bulletin》2001,50(11):2130-2133
1,2- and 1,3-Bis(ketenyl)benzenes formed by double dehydrochlorination and by double Wolff rearrangement, respectively, gave ketenyl IR absorption at 2115, and 2122, and 2116 cm–1, respectively. Reaction of these bisketenes with the aminoxyl radical tetramethylpiperidin-1-yloxyl (TEMPO) gave the corresponding tetraadducts as mixtures of meso- and d,l-isomers. The kinetics of the reaction of 1,3-bis(ketenyl)benzene with TEMPO gave a rate constant comparable to that of the monoketene PhCH=C=O. The reactions proceed by the initial attack of TEMPO on the carbonyl carbon of one ketenyl group followed by fast capture of the intermediate radical by a second TEMPO, and then reaction of the remaining ketene.  相似文献   

10.
The first regiodivergent oxyboration of unactivated terminal alkenes is reported, using copper alkoxide as a catalyst, bis(pinacolato)diboron [(Bpin)2] as a boron source, and (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) as an oxygen source. The reaction is compatible with various functional groups. Two regioisomers are selectively produced by selecting the appropriate ligands on copper. The products may be used as a linchpin precursor for various other functionalizations, and net processes such as carbooxygenation, aminooxygenation, and dioxygenation of alkenes can be achieved after C?B bond transformations. Mechanistic studies indicate that the reaction involves the following steps: 1) Transmetalation between CuOtBu and (Bpin)2 to generate a borylcopper species; 2) regiodivergent borylcupration of alkenes; 3) oxidation of the thus‐generated C?Cu bond to give an alkyl radical; 4) trapping of the resulting alkyl radical by TEMPO.  相似文献   

11.
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006  相似文献   

12.
The geometries and energetics of transition states (TS) for radical deactivation reactions, including competitive combination and disproportionation reactions, have been studied for the modeled 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated free‐radical polymerization of acrylonitrile with quantum mechanical calculations at the DFT/UB3‐LYP/6‐311+G(3df,2p)//(U)AM1 level of theory (where DFT is density functional theory, AM1 is Austin model 1, and UAM1 is unrestricted Austin model 1). A method providing reasonable starting geometries for an effective search for TS between the TEMPO radical and 1‐cyanopropyl radical mimicking the growing polyacrylonitrile macroradical is shown. For the hydrogen atom abstraction reaction by the TEMPO radical from the 1‐cyanopropyl radical, practically one TS has been found, whereas for the combination reaction of the radicals, several TS have been found, mainly differing in out‐of‐plane angle α of the N? O bond in the TEMPO structure. α in the TS is correlated with the activation energy, ΔE, determined from the single‐point calculation at the DFT UB3‐LYP/6‐311+G(3df, 2p)//UAM1 level for the combination reaction of CH3AN· with the TEMPO radical. The theoretical activation energy for the coupling reaction from DFT UB3‐LYP/6‐311+G(3df, 2p)//UAM1 calculations has been estimated to be 11.6 kcal mol?1, that is, only about 4.5 times smaller than ΔE for the disproportionation reaction obtained with the DFT UB3‐LYP/6‐311+G(3df, 2p)//(U)AM1 approach. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 914–927, 2006  相似文献   

13.
Propane pyrolysis is studied in the presence and the absence of dihydrogen between 743 and 803 K, in the propane pressure range 10–100 Torr, and at 20–254 Torr dihydrogen pressure. In unpacked Pyrex reactors, dihydrogen accelerates propane dehydrogenation and demethanation. The reaction is modeled by a conventional homogeneous free‐radical chain mechanism. Propane pyrolysis is strongly inhibited by the walls of reactors packed with stainless steel, zirconium, or palladium foils. Adding dihydrogen to propane still increases the rates of product formation. The reaction in these packed reactors is modeled by the kinetic scheme proposed for the homogeneous reaction and by the heterogeneous process H. ⇄ ½H2 (w2)(−w2) of chain termination and initiation. In the absence of dihydrogen, step (−w2) is negligible and precise values of uptake coefficients of hydrogen atoms are obtained at 773 K: 0.31 for stainless steel 0.10 for zirconium 0.05 for palladium In the presence of dihydrogen, steps (w2) and (−:w2) are instantaneously at equilibrium. The latter system should be useful to study any reaction of hydrogen atoms in the temperature range. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 340–364, 2000  相似文献   

14.
The strong boron Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is shown to abstract a hydride from suitably donor‐substituted cyclohexa‐1,4‐dienes, eventually releasing dihydrogen. This process is coupled with the FLP‐type (FLP=frustrated Lewis pair) hydrogenation of imines and nitrogen‐containing heteroarenes that are catalyzed by the same Lewis acid. The net reaction is a B(C6F5)3‐catalyzed, i.e., transition‐metal‐free, transfer hydrogenation using easy‐to‐access cyclohexa‐1,4‐dienes as reducing agents. Competing reaction pathways with or without the involvement of free dihydrogen are discussed.  相似文献   

15.
Summary: The possibility of transforming a living anionic polymerization into a stable radical‐mediated radical polymerization (SFRP) was demonstrated. For this purpose, 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) alcoholate, formed by a one‐electron redox reaction between potassium naphthalene and TEMPO, was used to initiate the living anionic polymerization of ethylene oxide (EO). Poly(ethylene oxide) obtained in this way possessed TEMPO terminal units and was subsequently used as an initiator for the SFRP of styrene to give block copolymers.

A one‐electron redox reaction gives rise to TEMPO alcoholate, which is able to initiate the living anionic polymerization of ethylene oxide (EO).  相似文献   


16.
Coordination of a redox‐active pyridine aminophenol ligand to RuII followed by aerobic oxidation generates two diamagnetic RuIII species [ 1 a (cis) and 1 b (trans)] with ligand‐centered radicals. The reaction of 1 a / 1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)‐bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru‐N‐Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a / 1 b supports the oxidation of a nitride (N3?) to half an equivalent of N2. The trinuclear omplex is reactive toward TEMPO‐H, tin hydrides, thiols, and dihydrogen.  相似文献   

17.
The effect of temperature, catalyst system, and the structure of bromine connected groups on the nitroxide radical coupling (NRC) reaction is investigated in details. A series of polymers with different bromine connected groups as poly (tert‐butyl acrylate) (PtBA‐Br), polystyrene (PS‐Br), and poly (methyl methacrylate) (PMMA‐Br) are prepared by atom transfer radical polymerization first, then the bromine‐containing polymers were coupled with 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy‐containing poly(ε‐caprolactone) (PCL‐TEMPO) in different catalyst systems as CuBr/PMDETA, Cu0/PMDETA and CuBr/Cu0/PMDETA in the temperature range from 90 °C to 25 °C. The result shows that the catalyst system of CuBr/Cu0/PMDETA is the best one for NRC reaction, in which the NRC reaction could be conducted in high efficiency in the wide temperature range from room temperature to high temperature. The efficiency of NRC reaction between PtBA‐Br and PCL‐TEMPO is more than 85% in the temperature range from 25 to 75 °C, the efficiency between PS‐Br and PCL‐TEMPO is more than 90% from 25 to 90 °C, and the efficiency between PMMA‐Br and PCL‐TEMPO is more than 90% only at the room temperature. The effect of bromine connected groups on the NRC reaction is discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2991–2999, 2010  相似文献   

18.
The amphiphilic A2B star‐shaped copolymers of polystyrene‐b‐[poly(ethylene oxide)]2 (PS‐b‐PEO2) were synthesized via the combination of atom transfer nitroxide radical coupling (ATNRC) with ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP) mechanisms. First, a novel V‐shaped 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐PEO2 (TEMPO‐PEO2) with a TEMPO group at middle chain was obtained by ROP of ethylene oxdie monomers using 4‐(2,3‐dihydroxypropoxy)‐TEMPO and diphenylmethyl potassium as coinitiator. Then, the linear PS with a bromine end group (PS‐Br) was obtained by ATRP of styrene monomers using ethyl 2‐bromoisobutyrate as initiator. Finally, the copolymers of PS‐b‐PEO2 were obtained by ATNRC between the TEMPO and bromide groups on TEMPO‐PEO2 and PS‐Br, respectively. The structures of target copolymers and their precursors were all well‐defined by gel permeation chromatographic and nuclear magnetic resonance (1H NMR). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Summary: 2,2,6,6-Tetramethylpiperidinyl-N-oxy (TEMPO) is a robust nitroxide radical molecule under ambient conditions. We found that the TEMPO derivatives act as a proton acceptor to form an intermolecular hydrogen-bonding complex with many kinds of phenol or urea derivatives. ORTEP analysis of the crystals of TEMPO with the phenol derivatives indicated that hydrogen bonding could be formed between the oxygen of the nitroxide and the phenolic proton and the N O bond of the hydrogen-bonded TEMPO was lengthened in comparison to that of the free N O bond. The formation constant of the hydrogen-bonding complex of TEMPO with the phenol or urea derivatives in a chloroform solution was spectroscopically determined by IR to be 10–100 M−1. Hydrogen bonding of the thelechelic bis-TEMPO derivatives with thelechelic bis-phenol or bis-urea derivatives provided a supramolecular structure. The estimated molecular weights of the supramolecules in the chloroform solution, based on DOSY-NMR spectroscopy, were 3000–4000. The potential of the nitroxide radical's supramolecule as a new functional material is also described.  相似文献   

20.
The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号