共查询到20条相似文献,搜索用时 15 毫秒
1.
采用双-(β-酮萘胺)镍(II)/B(C6F5)3/AlEt3体系在甲苯溶剂中进行了降冰片烯衍生物醋酸降冰片烯酯的聚合,研究了聚合温度和聚合时间对聚合的影响。通过1H NMR、13C NMR、FT-IR、DSC及WAXD技术对聚合物的结构和性能进行了研究。证明双-(β-酮萘胺)镍(II)/B(C6F5)3/AlEt3体系催化醋酸降冰片烯酯按乙烯基加成聚合方式进行的,聚合物分子量中等和分子量分布较窄。所得聚合产物为非晶态,具有短程有序长程无序的特征,热稳定性较好,并能够溶解在大部分普通有机溶剂中。 相似文献
2.
The catalytic properties of the complexes (RCp)2ZrCl2 (R=H, Me, Pri, Bun, Bui, Me3Si,cyclo-C6H11), and Me2SiCp*NBuiZrCl2 (Cp*=C5(CH3)4) combined with the AlBui
3−CPh3B(C6F5)4 cocatalyst in ethylene polymerization were studied. The specific activity of the substituted bis-cyclopentadienyl complexes
decreases in the sequence: Me>Pri>Bun>Bui>Me3Si>cyclo-C6H11, which corresponds to the activity sequence for these complexes activated by polymethylaluminoxane (MAO) but is 4–20 times
lower in absolute value. Comparison of the polyethylene samples obtained in the presence of the same complexes with MAO and
AlBui
3−CPh3B(C6F5)4 cocatalysts showed that polyethylene with much higher molecular mass, melting point, and crystallinity is formed in the presence
of the ternary catalytic systems, and this indicates a different nature of the active sites of the catalytic systems. The
effective activation energy of polymerization (≈3.6 kcal mol−1), first order with respect to monomer and ≈0.4 order with respect to organoaluminum component, was found for the (PriCo)2ZrCl2−AlBui
3−CPh3B(C6F5)4 catalytic system. It was proposed on the basis of the kinetic data that AliBu3 enters into the composition of the active site to form a bridged heteronuclear cationic complex.
Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp 301–307, February, 2000. 相似文献
3.
Daryoosh Beigzadeh Joo B.P. Soares Thomas A. Duever 《Journal of polymer science. Part A, Polymer chemistry》2004,42(12):3055-3061
This investigation studied the solution polymerization of ethylene in Isopar E in a semibatch reactor using CGC‐Ti as catalyst and methylalumoxane (MAO) and tris(pentaflourophenyl)borane [B(C6F5)3] as cocatalysts. The effects of cocatalyst type and amount on the chain microstructure were investigated. 13C NMR and gel permeation chromatography were used to determine the long‐chain branching (LCB) content and molecular weight distribution (MWD), respectively, of the samples. It was observed that higher concentrations of MAO increased the LCB content and decreased the molecular weight of the polymer. On the other hand, increasing the amount of B(C6F5)3 lowered the LCB content, increased the molecular weight, and broadened MWD significantly. We believe that this approach can be used as an efficient way to control the microstructure of polyolefins made with these catalytic systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3055–3061, 2004 相似文献
4.
Cooperative Lewis Pairs Based on Late Transition Metals: Activation of Small Molecules by Platinum(0) and B(C6F5)3 下载免费PDF全文
Sebastian J. K. Forrest Jamie Clifton Dr. Natalie Fey Prof. Paul G. Pringle Dr. Hazel A. Sparkes Prof. Duncan F. Wass 《Angewandte Chemie (International ed. in English)》2015,54(7):2223-2227
A Lewis basic platinum(0)–CO complex supported by a diphosphine ligand and B(C6F5)3 act cooperatively, in a manner reminiscent of a frustrated Lewis pair, to activate small molecules such as hydrogen, CO2, and ethene. This cooperative Lewis pair facilitates the coupling of CO and ethene in a new way. 相似文献
5.
SinceKaminskyeIal.discoveredthehighlyactivezirconocenedich1oride/methyl-aluminoxane(MAO)catalyticsystemforolefinpolymerization',intensiveresearchworkhasbeenfocusedondevelopingnewgroup4metal1ocenecatalystsforimprovingcatalystactivitiesandpolymerproperties"'.Inthedevelopmentofnewmetallocenecatalystsystems,liganddesignandmodificationhaveplayedanimportantrole.lthasbeenknownthatevenminormodificationofagivenligandframeworkcouldresultinsignificantchangesincatalystactivitiesandpolymerproperties'.Int… 相似文献
6.
Il Kim Yong Shu Shin Jin Kook Lee 《Journal of polymer science. Part A, Polymer chemistry》2000,38(9):1590-1598
Copolymerizations of propylene (P) with 1,5‐hexadiene (1,5‐HD) were carried out with isospecific rac‐1,2‐ethylenebis(1‐indenyl)Zr(NMe2)2 [rac‐(EBI)Zr(NMe2)2, 1] and syndiospecific isopropylidene(cyclopentadienyl)(9‐fluorenyl)ZrMe2 [i‐Pr(Cp)(Flu)ZrMe2, 2] compounds combined with Al(i‐Bu)3/[Ph3C][B(C6F5)4] as a cocatalyst system. Microstructures of poly(propylene‐co‐1,5‐HD) were determined by 1H NMR, 13C NMR, Raman spectroscopies and X‐ray powder diffraction. The isospecific 1/Al(i‐Bu)3/[Ph3C][B(C6F6)4] catalyst showed much higher polymerization rate than 2/Al(i‐Bu)3/[Ph3C][B(C6F6)4] system, however, the latter system showed higher incorporation of 1,5‐HD (rP = 8.85, r1,5‐HD = 0.274) than the former system (rP = 16.25, r1,5‐HD = 0.34). The high value of rP × r1,5‐HD far above 1 demonstrated that the copolymers obtained by both catalysts are somewhat blocky. The insertion of 1,5‐HD proceeded by enantiomorphic site control; however, the diastereoselectivity of the intramolecular cyclization reaction of 1,2‐inserted 1,5‐HD was independent of the stereospecificity of metallocene compounds, but dependent on the concentration of 1,5‐HD in the feed. The insertion of the monomers by enantiomorphic site control could also be realized by Raman spectroscopy and X‐ray powder diffraction of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1590–1598, 2000 相似文献
7.
8.
Hoang The Ban Yasuo Tsunogae Takeshi Shiono 《Journal of polymer science. Part A, Polymer chemistry》2005,43(6):1188-1195
This article reports a new methodology for preparing highly stereoregular styrene (ST)/1,3‐butadiene (BD) block copolymers, composed of syndiotactic polystyrene (syn‐PS) segments chemically bonded with cis‐polybutadiene (cis‐PB) segments, through a stereospecific sequential block copolymerization of ST with BD in the presence of a C5Me5TiMe3/B(C6F5)3/Al(oct)3 catalyst. The first polymerization step, conducted in toluene at ?25 °C, was attributed to the syndiospecific living polymerization of ST. The second step, conducted at ?40 °C, was attributed to the cis‐specific living polymerization of BD. The livingness of the whole polymerization system was confirmed through a linear increase in the weight‐average molecular weights of the copolymers versus the polymer yields in both steps, whereas the molar mass distributions remained constant. The profound cross reactivity of the styrenic‐end‐group active species with BD toward ST led to the production of syn‐PS‐b‐cis‐PB copolymers with extremely high block efficiencies. Because of the presence of crystallizable syn‐PS segments, this copolymer exhibited high melting temperatures (up to 270 °C), which were remarkably different from those of the corresponding anionic ST–BD copolymers, for which no melting temperatures were observed. Scanning electron microscopy pictures of a binary syn‐PS/cis‐PB blend with or without the addition of the syn‐PS‐b‐cis‐PB copolymers proved that it could be used as an effective compatibilizer for noncompatibilized syn‐PS/cis‐PB binary blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1188–1195, 2005 相似文献
9.
Classes of mainly nickel(II) and palladium(II) complexes are comparatively presented in their norbornene polymerization activity to vinyl polynorbornene when activated with methylalumoxane, MAO, tris(pentafluorophenyl)borane/triethylaluminum, B(C6F5)3/AlEt3 or even B(C6F5)3 alone. Classes include Ni and Pd complexes with α-dioxime ligands, salts with [PdCl4]2− and [Pd2Cl6]2− units, dinuclear Ni and Pd complexes with multidentate Schiff-base ligands, polynuclear Ni- and Cr/Ni-carboxylate cage complexes, and dihalo(bisphosphane) Ni and Pd complexes. The study of activation mechanism by 31P- and 19F-NMR together with X-ray structural data points to the formation of PdCl2 units and “naked” Pd2+ cations as highly active species. 相似文献
10.
Beringhelli T D'Alfonso G Maggioni D Mercandelli P Sironi A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(2):650-661
The two ion pairs [(4,7-Me(2)indenyl)(2)ZrMe](+)[MeB(C(6)F(5))(3)](-) (1 b) and [(indenyl)(2)ZrMe](+) [MeB(C(6)F(5))(3)](-) (2 b) have been generated in situ by reaction of stoichiometric B(C(6)F(5))(3) with the corresponding dimethyl zirconocenes. It has been shown that molecular mechanics computations, guided by experimental (1)H/(1)H NOE correlations, can provide information on the conformers present in solution. The dynamics of the ion pairs has also been investigated, showing the occurrence of both the processes previously characterized for this class of compounds, namely the B(C(6)F(5))(3) migration between the two methyl groups and dissociation-recombination of the whole [MeB(C(6)F(5))(3)](-) anion, the latter process being much faster than the first one (about three order of magnitude). Moreover, it has been shown that in certain conditions intermolecular processes can occur, which mimic the above-mentioned dissociative exchanges. In particular, the presence of species containing loosely bound [MeB(C(6)F(5))(3)](-) anion fastens the exchange of this anion, while the presence of free B(C(6)F(5))(3) accelerates its exchange between the two methyl sites. 相似文献
11.
Sergei V. Kostjuk Alexei V. Radchenko François Ganachaud 《Journal of polymer science. Part A, Polymer chemistry》2008,46(14):4734-4747
The controlled cationic polymerization of cyclopentadiene (CPD) at 20 °C using 1‐(4‐methoxyphenyl)ethanol (1)/B(C6F5)3 initiating system in the presence of fairly large amount of water is reported. The number–average molecular weights of the obtained polymers increased in direct proportion to monomer conversion in agreement with calculated values and were inversely proportional to initiator concentration, while the molecular weight distribution slightly broadened during the polymerization (Mw/Mn ~ 1.15–1.60). 1H NMR analyses confirmed that the polymerization proceeds via reversible activation of the C? OH bond derived from the initiator to generate the growing cationic species, although some loss of hydroxyl functionality happened in the course of the polymerization. It was also shown that the enchainment in cationic polymerization of CPD was affected by the nature of the solvent(s): for instance, polymers with high regioselectivity ([1,4] up to 70%) were obtained in acetonitrile, whereas lower values (around 60%) were found in CH2Cl2/CH3CN mixtures. Aqueous suspension polymerization of CPD using the same initiating system was successfully performed and allowed to synthesize primarily hydroxyl‐terminated oligomers (Fn = 0.8–0.9) with Mn ≤ 1000 g mol?1 and broad MWD (Mw/Mn ~ 2.2). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4734–4747, 2008 相似文献
12.
Yuepeng Xing Yiwang Chen Xiaohui He 《Journal of polymer science. Part A, Polymer chemistry》2011,49(20):4425-4432
Copolymerization of norbornene (NB) with methoxycarbonylnorbornene (NB‐COOCH3) was carried out with catalytic system of Ni{CF3C(O)CHC[N(naphthyl)]CH3}2 and B(C6F5)3 in toluene. The catalytic system exhibited higher activity 2.69 × 105 (gpolymer/mol Ni h) for copolymerization of norbornene and methoxycarbonylnorbornene. The influence results of the comonomer feed content on the polymerization showed that the NB‐COOCH3 has a very high insertion ratio in all copolymers, and the NB‐COOCH3 content in copolymers can be controlled to be 7.9–77.6 mol % at content of 10–90 mol % of the NB‐COOCH3 in the monomer feeds ratios. The reactivity ratios, rNB‐COOCH3 = 0.578 and rNB = 0.859, were determined by the Kelen–TÜdÕs method. Copolymers were processed by solution casting method, dry/wet phase inversion technique, and electrospinning. The films prepared by solution casting method showed good transparency in the visible region. The membranes processed by dry/wet phase inversion technique were microporous structures. The fibers diameters fabricated by electrospinning were about 3 μm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
13.
The polymerization of norbornene with bis(β‐ketonaphthylamino) palladium(II), Pd{CH3C(O)CHC[N(naphthyl)]CH3}2, in combination with tris(pentafluorophenyl)borane (B(C6F5)3), was investigated by varying the B:Pd(II) molar ratio, monomer concentration, reaction temperature, and time. The catalytic activity was found to reach 2.8 × 104 gPolymer/(molPd?h) and the obtained polynorbornene (PNBE) was confirmed to be vinyl addition polymer and showed good thermo‐stability (Tdec > 350°C), but exhibited poor solubility in organic solvents due to the relative higher stereo regularity. Pd{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 system is also an active catalyst for copolymerization of norbornene and 5‐norbornene‐2‐yl acetate (NBE‐OCOCH3) in toluene with moderate yields (in 9.2–36.5% yields) and produces the addition‐type copolymer with relatively high molecular weights (0.96 × 104–2.13 × 104 g/mol). The incorporation of functional group in the copolymer can be controlled up to 0.9–23.5 mol% by varying the NBE‐OCOCH3 monomer feed ratios from 10 to 90%. The copolymers are proved to be noncrystalline and show good solubility in common organic solvents and excellent thermal stability up to 350°C. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
14.
Sean W. Ewart Michelle A. Parent Michael C. Baird 《Journal of polymer science. Part A, Polymer chemistry》1999,37(23):4386-4389
Polymerization of propylene by Cp*TiMe2(μ-Me)B(C6F5)3 in the presence of increasing partial pressures of H2 results in ever decreasing polymer molecular weights, which is consistent with the hydrogenolytic chain transfer processes involving metal–polymer bonds in many heterogeneous and homogeneous systems. However, catalytic activities are not significantly increased as the extent of hydrogenolysis increases, unlike metallocene catalyst systems in which the H2 reacts primarily with dormant catalytic sites containing propylene 2,1-insertion products. It was shown previously that monocyclopentadienyl systems do not become seriously deactivated following 2,1 insertions, and thus hydrogenolysis does not result in enhanced activities. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4386–4389, 1999 相似文献
15.
Huaquan Fang Martin Oestreich 《Angewandte Chemie (International ed. in English)》2020,59(28):11394-11398
The strong boron Lewis acid tris(pentafluorophenyl)borane B(C6F5)3 is known to catalyze the dehydrogenative coupling of certain amines and hydrosilanes at elevated temperatures. At higher temperature, the dehydrogenation pathway competes with cleavage of the C?N bond and defunctionalization is obtained. This can be turned into a useful methodology for the transition‐metal‐free reductive deamination of a broad range of amines as well as heterocumulenes such as an isocyanate and an isothiocyanate. 相似文献
16.
Lindqvist M Sarnela N Sumerin V Chernichenko K Leskelä M Repo T 《Dalton transactions (Cambridge, England : 2003)》2012,41(15):4310-4312
Aromatic carbonyl compounds in combination with B(C(6)F(5))(3) are able to activate H(2) heterolytically. The reactivity of the carbonyl-B(C(6)F(5))(3) adduct is initiated by its thermal dissociation into components. After H(2) addition, aromatic carbonyl compounds convert into aryl-substituted methanes or alcohols. 相似文献
17.
Kaiti Wang Yiwang Chen Xiaohui He Yueman Liu Weihua Zhou 《Journal of polymer science. Part A, Polymer chemistry》2011,49(15):3304-3313
Two complexes Mt{C10H8(O)C[N(C6H5)]CH3}2 [Mt = Ni(II); Mt = Pd(II)] were synthesized, and the solid‐state structures of the complexes have been determined by single‐crystal X‐ray diffractions. Homopolymerization of norbornene (NB) and copolymerization of NB and 5‐norbornene‐2‐yl acetate (NB‐OCOCH3) were carried out in toluene with both the two complexes mentioned above in combination with B(C6F5)3. Both the catalytic systems exhibited high activity toward the homopolymerization of NB (as high as 2.7 × 105 gpolymer/molNi h, for Ni(II)/B(C6F5)3 and 2.1 × 105 gpolymer/molPd h for Pd(II)/B(C6F5)3, respectively.). Although the Pd(II)/B(C6F5)3 shows very lower activity toward the copolymerization of NB with NB‐OCOCH3, Ni(II)/B(C6F5)3 shows a high activity and produces the addition‐type copolymer with relatively high molecular weights (MWs; 1.80–2.79 × 105 g/mol) as well as narrow MW distribution (1.89–2.30). The NB‐OCOCH3 content in the copolymers can be controlled up to 5.8–12.0% by varying the comonomer feed ratios from 10 to 50%. The copolymers exhibited high transparency, high glass transition temperature (Tg > 263.9 °C), better solubility, and mechanical properties compared with the homopolymer of NB. The reactivity ratios of the two monomers were determined to be rNB‐OCOMe = 0.08, rNB = 7.94 for Ni(II)/B(C6F5)3 system, and rNB‐OCOMe = 0.07, rNB = 6.49, for Pd(II)/B(C6F5)3 system by the Kelen‐Tüdõs method. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
18.
The thermodynamic and structural characteristics of Al(C6F(5)3-derived vs B(C6F5)3-derived group 4 metallocenium ion pairs are quantified. Reaction of 1.0 equiv of B(C6F5)3 or 1.0 or 2.0 equiv of Al(C6F5)3 with rac-C2H4(eta5-Ind)2Zr(CH3)2 (rac-(EBI)Zr(CH3)2) yields rac-(EBI)Zr(CH3)(+)H3CB(C6)F5)(3)(-) (1a), rac-(EBI)Zr(CH3)+H3CAl(C6F5)(3)(-) (1b), and rac-(EBI)Zr2+[H3CAl(C6F5)3](-)(2) (1c), respectively. X-ray crystallographic analysis of 1b indicates the H3CAl(C6F5)(3)(-) anion coordinates to the metal center via a bridging methyl in a manner similar to B(C6F5)3-derived metallocenium ion pairs. However, the Zr-(CH3)(bridging) and Al-(CH3)(bridging) bond lengths of 1b (2.505(4) A and 2.026(4) A, respectively) indicate the methyl group is less completely abstracted in 1b than in typical B(C6F5)3-derived ion pairs. Ion pair formation enthalpies (DeltaH(ipf)) determined by isoperibol solution calorimetry in toluene from the neutral precursors are -21.9(6) kcal mol(-1) (1a), -14.0(15) kcal mol(-1) (1b), and -2.1(1) kcal mol(-1) (1b-->1c), indicating Al(C6F5)3 to have significantly less methide affinity than B(C6F5)3. Analogous experiments with Me2Si(eta5-Me4C5)(t-BuN)Ti(CH3)2 indicate a similar trend. Furthermore, kinetic parameters for ion pair epimerization by cocatalyst exchange (ce) and anion exchange (ae), determined by line-broadening in VT NMR spectra over the range 25-75 degrees C, are DeltaH++(ce) = 22(1) kcal mol(-1), DeltaS++(ce) = 8.2(4) eu, DeltaH++(ae) = 14(2) kcal mol(-1), and DeltaS++(ae) = -15(2) eu for 1a. Line broadening for 1b is not detectable until just below the temperature where decomposition becomes significant ( approximately 75-80 degrees C), but estimation of the activation parameters at 72 degrees C gives DeltaH++(ce) approximately 22 kcal mol(-1)and DeltaH++(ae) approximately 16 kcal mol(-1), consistent with the bridging methide being more strongly bound to the zirconocenium center than in 1a. 相似文献
19.
Fuping He Yiwang Chen Xiaohui He Muqing Chen Weihua Zhou Qing Wu 《Journal of polymer science. Part A, Polymer chemistry》2009,47(16):3990-4000
Vinyl‐type copolymerization of norbornene (NBE) and 5‐NBE‐2‐yl‐acetate (NBE‐OCOMe) in toluene were investigated using a novel homogeneous catalyst system based on bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. The copolymerization behavior as well as the copolymerization conditions, such as the levels of B(C6F5)3 and AlEt3, temperature, and monomer feed ratios, which influence on the copolymerization were examined. Without combination of AlEt3, the catalytic bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3 exhibited very high catalyst activity for polymerization of NBE. Combination of AlEt3 in catalyst system resulted in low conversion for polymerization of NBE. For copolymerization of NBE and NBE‐OCOMe, involvement of AlEt3 in catalyst is necessary. Slight addition of NBE‐OCOMe in copolymerization of NBE and NBE‐OCOMe gives rise to significant increase of catalyst activity for catalytic system bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. Nevertheless, excess increase of the NBE‐OCOMe content in the comonomer feed ratios results in decrease of conversion as well as activity of catalyst. The achieved copolymers were confirmed to be vinyl‐addition copolymers through the analysis of FTIR, 1H NMR, and 13C NMR spectra. 13C NMR studies further revealed the composition of the copolymer and the incorporation rate was 7.6–54.1 mol % ester units at a content of 30–90 mol % of the NBE‐OCOMe in the monomer feeds ratios. TGA analysis results showed that the copolymer exhibited good thermal stability (Td > 410 °C) and failed to observe the glass transitions temperature over 300 °C. The copolymers are confirmed to be noncrystalline by WAXD analysis results and show good solubility in common organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3990–4000, 2009 相似文献
20.
Michael C. Murray Michael C. Baird 《Journal of polymer science. Part A, Polymer chemistry》2000,38(21):3966-3976
The Ziegler–Natta system Cp*TiMe3/B(C6F5)3 catalyzed the copolymerization of ethylene and 1‐hexene in toluene into materials that were characterized by 1H and 13C{1H} NMR spectroscopy, differential scanning calorimetry, and gel permeation chromatography. The effects of temperature and ethylene/1‐hexene and olefin/catalyst ratios on catalyst activities and copolymer molecular weights and molecular weight distributions were studied; the ethylene proportions varied from less than 5% to 85% or more. In addition, significant amounts of 1‐hexene were incorporated into the growing polymer chain in a 2,1‐fashion; consequently, conventional 13C NMR analytical methodologies for deducing monomer proportions and dispersions and polymer microstructures, based on a low 1,2‐incorporation of α‐olefin, did not work very well. A soluble (in toluene at ambient temperature) but very high molecular weight (weight‐average molecular weight ∼ 8 × 105, weight‐average molecular weight/number‐average molecular weight = 1.8) rubbery copolymer that formed at −78 °C exhibited a predominantly alternating microstructure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3966–3976, 2000 相似文献