首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new method is presented for preparing gram amounts of very small core/shell upconversion nanocrystals without additional codoping of the particles. First, ca. 5 nm β‐NaYF4:Yb,Er core particles are formed by the reaction of sodium oleate, rare‐earth oleate, and ammonium fluoride, thereby making use of the fact that a high ratio of sodium to rare‐earth ions promotes the nucleation of a large number of β‐phase seeds. Thereafter, a 2 nm thick NaYF4 shell is formed by using 3–4 nm particles of α‐NaYF4 as a single‐source precursor for the β‐phase shell material. In contrast to the core particles, however, these α‐phase particles are prepared with a low ratio of sodium to rare‐earth ions, which efficiently suppresses an undesired nucleation of β‐NaYF4 particles during shell growth.  相似文献   

2.
3.
Upon introducing Ca2+ dopants into the grain lattices by substituting Gd3+ ions, irregular Yb/Er:NaGdF4 nanocrystals prepared through a simple solvothermal route convert into highly uniform nanorods. Meanwhile, their upconversion luminescence intensifies by about 200 times, probably due to a modification of the crystal structure of NaGdF4 and an improvement in the crystallinity of the nanophase.  相似文献   

4.
Upconverting nanoparticles (UCNPs) with fascinating properties hold great potential as nanotransducers for solving the problems that traditional photodynamic therapy (PDT) has been facing. In this report, by using well‐selected bifunctional gadolinium (Gd)‐ion‐doped UCNPs and water‐soluble methylene blue (MB) combined with the water‐in‐oil reverse microemulsion technique, we have succeeded in developing a new kind of UCNP/MB‐based PDT drug, NaYF4:Er/Yb/Gd@SiO2(MB), with a particle diameter less than 50 nm. Great efforts have been made to investigate the drug‐formation mechanism and provide detailed physical and photochemical characterizations and the potential structure optimization of the as‐designed PDT drug. We envision that such a PDT drug will become a potential theranostic nanomedicine for future near‐infrared laser‐triggered photodynamic therapy and simultaneous magnetic/optical bimodal imaging.  相似文献   

5.
The fundamental understanding of lanthanide‐doped upconverted nanocrystals remains a frontier area of research because of potential applications in photonics and biophotonics. Recent studies have revealed that upconversion luminescence dynamics depend on host crystal structure, size of the nanocrystals, dopant concentration, and core–shell structures, which influence site symmetry and the distribution and energy migration of the dopant ions. In this review, we bring to light the influences of doping/co‐doping concentration, crystal phase, crystal size of the host, and core–shell structure on the efficiency of upconversion emission. Furthermore, the lattice strain, due to a change in the crystal phase and by the core–shell structure, strongly influences the upconversion emission intensity. Analysis suggests that the local environment of the ion plays the most significant role in modification of radiative and nonradiative relaxation mechanisms of overall upconversion emission properties. Finally, an outlook on the prospects of this research field is given.  相似文献   

6.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub‐2 nm size and near‐unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy‐atom‐rich organic fluorophores is mitigated through a silane‐molecule‐mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long‐term photostability. Taking advantage of the low‐power excitation (0.5 μW), prolonged singlet‐state lifetime, and negligible depletion‐induced re‐excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm?2), and ultra‐high lateral resolution (ca. λem/28).  相似文献   

7.
Exploiting advanced photocatalysts under visible light is of primary significance for the development of environmentally relevant photocatalytic decontamination processes. In this study, the ionic liquid (IL), 1‐butyl‐3‐methylimidazolium tetrafluoroborate, was employed for the first time as both a structure‐directing agent and a dopant for the synthesis of novel fluorinated B/C‐codoped anatase TiO2 nanocrystals (TIL) through hydrothermal hydrolysis of tetrabutyl titanate. These TIL nanocrystals feature uniform crystallite and pore sizes and are stable with respect to phase transitions, crystal ripening, and pore collapse upon calcination treatment. More significantly, these nanocrystals possess abundant localized states and strong visible‐light absorption in a wide range of wavelengths. Because of synergic interactions between titania and codopants, the calcined TIL samples exhibited high visible‐light photocatalytic activity in the presence of oxidizing Rhodamine B (RhB). In particular, 300 °C‐calcined TIL was most photocatalytically active; its activity was much higher than that of TiO1.98N0.02 and reference samples (TW) obtained under identical conditions in the absence of ionic liquid. Furthermore, the possible photocatalytic oxidation mechanism and the active species involved in the RhB degradation photocatalyzed by the TIL samples were primarily investigated experimentally by using different scavengers. It was found that both holes and electrons, as well as their derived active species, such as .OH, contributed to the RhB degradation occurring on the fluorinated B/C‐codoped TiO2 photocatalyst, in terms of both the photocatalytic reaction dynamics and the reaction pathway. The synthesis of the aforementioned novel photocatalyst and the identification of specific active species involved in the photodegradation of dyes could shed new light on the design and synthesis of semiconductor materials with enhanced photocatalytic activity towards organic pollutants.  相似文献   

8.
Novel β‐NaGdF4/Na(Gd,Yb)F4:Er/NaYF4:Yb/NaNdF4:Yb core/shell 1/shell 2/shell 3 (C/S1/S2/S3) multi‐shell nanocrystals (NCs) have been synthesized and used as probes for in vivo imaging. They can be excited by near‐infrared (800 nm) radiation and emit short‐wavelength infrared (SWIR, 1525 nm) radiation. Excitation at 800 nm falls into the “biological transparency window”, which features low absorption by water and low heat generation and is considered to be the ideal excitation wavelength with the least impact on biological tissues. After coating with phospholipids, the water‐soluble NCs showed good biocompatibility and low toxicity. With efficient SWIR emission at 1525 nm, the probe is detectable in tissues at depths of up to 18 mm with a low detection threshold concentration (5 nM for the stomach of nude mice and 100 nM for the stomach of SD rats). These results highlight the potential of the probe for the in vivo monitoring of areas that are otherwise difficult to analyze.  相似文献   

9.
Phosphorus has been successfully fused into a classic rhodamine framework, in which it replaces the bridging oxygen atom to give a series of phosphorus‐substituted rhodamines (PRs). Because of the electron‐accepting properties of the phosphorus moiety, which is due to effective σ*–π* interactions and strengthened by the inductivity of phosphine oxide, PR exhibits extraordinary long‐wavelength fluorescence emission, elongating to the region above 700 nm, with bathochromic shifts of 140 and 40 nm relative to rhodamine and silicon‐substituted rhodamine, respectively. Other advantageous properties of the rhodamine family, including high molar extinction coefficient, considerable quantum efficiency, high water solubility, pH‐independent emission, great tolerance to photobleaching, and low cytotoxicity, stay intact in PR. Given these excellent properties, PR is desirable for NIR‐fluorescence imaging in vivo.  相似文献   

10.
Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm?2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts.  相似文献   

11.
An intense single‐band blue emission at λ=450 nm is observed from Tm3+ ions through Ce3+ sensitization, for the first time, in colloidal Ce3+/Tm3+‐doped NaYF4 nanocrystals. The intense Tm3+ emission through broad‐band excitation is advantageous for developing luminescent nanocomposites because they can be easily incorporated into polymers. The composites can easily be coated over UV light‐emitting diodes (LEDs) to develop phosphor‐based blue LEDs.  相似文献   

12.
Herein, we introduce a facile, user‐ and environmentally friendly (n‐octanol‐induced) oleic acid (OA)/ionic liquid (IL) two‐phase system for the phase‐ and size‐controllable synthesis of water‐soluble hexagonal rare earth (RE=La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) and n‐octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n‐octanol‐induced) OA/IL two‐phase system, the formation of the RE fluoride nanocrystals, and the distinctive size‐ and morphology‐controlling capacity of the system are presented. BmimPF6 is versatile in term of crystal‐phase manipulation, size and shape maintenance, and providing water solubility in a one‐step reaction. The luminescent properties of Er3+‐, Ho3+‐, and Tm3+‐doped LaF3, NaGdF4, and NaYF4 nanocrystals were also studied. It is worth noting that the as‐prepared products can be directly dispersed in water due to the hydrophilic property of Bmim+ (cationic part of the IL) as a capping agent. This advantageous feature has made the IL‐capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF4:Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

13.
Single‐crystal gold nanospheres with controlled diameters in the range 5–30 nm were synthesized by using a facile approach that was based on successive seed‐mediated growth. The key to the success of this synthesis was the use of hexadecyltrimethylammonium chloride (CTAC) as a capping agent and a large excess of ascorbic acid as a reductant to ensure fast reduction and, thus, single crystallinity and a spherical shape of the resultant nanoparticles. The diameters of the gold nanospheres could be readily controlled by varying the amount of seeds that were introduced into the reaction system. The gold nanospheres could be produced with uniform diameters of up to 30 nm; thus, their localized surface plasmon resonance properties could be directly compared with the results that were obtained from theoretical calculations. Interestingly, we also found that these gold nanospheres self‐assembled into dimers, larger aggregates, and wavy nanowires when they were collected by centrifugation, dispersed in deionized water, and then diluted to different volumes with deionized water.  相似文献   

14.
During traditional 2‐propanol‐based purification of aqueous nanocrystals (NCs), it is very difficult to recycle 2‐propanol from the aqueous solution, which brings great consumption of 2‐propanol during the purification process. A major contribution of this work is to provide a simple way to reduce the consumption via recycling of 2‐propanol during the purification process. The recycled 2‐propanol is available for precipitating NCs from aqueous solution in a new round of NC purification process. Due to the recycling of 2‐propanol, the great consumption of 2‐propanol can be avoided, which makes the purification process of aqueous NCs much greener and at a much lower cost.  相似文献   

15.
《Chemphyschem》2003,4(11):1203-1210
The synthesis and magneto‐optical properties of HgTe nanocrystals capped with HgxCd1?xTe(S) alloyed shells have been investigated. The magneto‐optical measurements included the use of optically detected magnetic resonance (ODMR) and circular polarized photoluminescence (CP‐PL) spectroscopy. The PL spectra suggest the existence of luminescence events from both the core HgTe and the HgxCd1?xTe(S) shells. The continuous‐wave (cw) and time‐resolved ODMR measurements revealed that the luminescence at the shell regime is associated with a trap‐to‐band recombination emission. The electron trap is comprised of a Cd–Hg mixed site, confirming the existence of an alloyed HgxCd1?xTe(S) composition. The ODMR data and the CP‐PL measurements together revealed the g‐values of the trapped electron and the valence band hole.  相似文献   

16.
A facile method for the preparation of the novel capping ligand 5‐(2‐mercaptoethyl)‐1H‐tetrazole for the stabilization of water‐soluble nanocrystals was developed. This effective synthetic procedure is based on the cycloaddition of sodium azide to 3,3′‐dithiobis(propionitrile) followed by the reductive cleavage of a S?S bond with triphenylphosphine. The structure of the synthesized compound was confirmed by single‐crystal X‐ray analysis. A target tetrazole was successfully applied for the direct aqueous synthesis of CdTe and Au nanocrystals. CdTe nanocrystals capped with 5‐(2‐mercaptoethyl)‐1H‐tetrazole were found to reveal high photoluminescence efficiencies (up to 77 %). Nanocrystals capped with this tetrazole ligand are able to build 3D structures in a metal‐ion‐assisted gelation process in aqueous solution. Critical point drying of the as‐formed hydrogels allowed the preparation of the corresponding aerogels, while preserving the mesoporous structure.  相似文献   

17.
Efficient violet–blue‐emitting molecules are especially useful for applications in full‐color displays, solid‐state lighting, as well as in two‐photon absorption (TPA) excited frequency‐upconverted violet–blue lasing. However, the reported violet–blue‐emitting molecules generally possess small TPA cross sections. In this work, new 1,8‐diazapyrenes derivatives 3 with blue two‐photon‐excited fluorescence emission were concisely synthesized by the coupling reaction of readily available 1,4‐naphthoquinone O,O‐diacetyl dioxime ( 1 ) with internal alkynes 2 under the [{RhCl2Cp*}2]–Cu(OAc)2 (Cp*=pentamethylcyclopentadienyl ligand) bimetallic catalytic system. Elongation of the π‐conjugated length of 1,8‐diazapyrenes 3 led to the increase of TPA cross sections without the expense of a redshift of the emission wavelength, probably due to the rigid planar structure of chromophores. It is especially noteworthy that 2,3,6,7‐tetra(4‐bromophenyl)‐1,8‐diazapyrene ( 3c ) has a larger TPA cross section than those of other molecules reported so far. These experimental results are explained in terms of the effects of extension of the π‐conjugated system, intramolecular charge transfer, and reduced detuning energy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号