首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SF6 was applied as pentafluorosulfanylation reagent to prepare ethers with a vicinal SF5 substituent through a one‐step method involving photoredox catalysis. This method shows a broad substrate scope with respect to applicable alcohols for the conversion of α‐methyl and α‐phenyl styrenes. The products bear a new structural motif with two functional groups installed in one step. The alkoxy group allows elimination and azidation as further transformations into valuable pentafluorosulfanylated compounds. These results confirm that non‐toxic SF6 is a useful SF5 transfer reagent if properly activated by photoredox catalysis, and toxic reagents are completely avoided. In combination with light as an energy source, a high level of sustainability is achieved. Through this method, the proposed potential of the SF5 substituent in medicinal chemistry, agrochemistry, and materials chemistry may be exploited in the future.  相似文献   

2.
3.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

4.
Erbium co‐doped TiO2/Ag catalysts are synthesized by using a simple, one‐step solvothermal method and characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy, Raman analysis, X‐ray photoelectron spectroscopy, and diffuse reflectance spectroscopy. The catalysts exhibit anatase crystal structures with increased visible light absorption compared with pure TiO2. Enhanced photocatalytic activity is observed with Er co‐doped TiO2/Ag nanocomposites for Rhodamine B degradation under visible light irradiation. The photocatalytic activity of 1 % Er co‐doped TiO2/Ag is much higher than that of TiO2/Ag, TiO2/Er, pure TiO2, and commercial Degussa P25. The kinetics of the degradation process are studied and the pseudo‐first‐order rate constant (k) and half‐life time (t1/2) of the reaction are calculated. The enhanced activity might be accredited to the efficient separation of electron–hole pairs by silver and higher visible light absorption of TiO2 induced by Er.  相似文献   

5.
A novel tetraoxolene‐bridged Fe two‐dimensional honeycomb layered compound, (NPr4)2[Fe2(Cl2An)3] ?2 (acetone)?H2O ( 1 ), where Cl2Ann?=2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinonate and NPr4+=tetrapropylammonium cation, has been synthesized. 1 revealed a thermally induced valence tautomeric transition at T1/2=236 K (cooling)/237 K (heating) between Fem+ (m=2 or 3) and Cl2Ann? (n=2 or 3) that induced valence modulations between [FeIIHSFeIIIHS(Cl2An2?)2(Cl2An.3?)]2? at T>T1/2 and [FeIIIHSFeIIIHS(Cl2An2?)(Cl2An.3?)2]2? at T<T1/2. Even in a two‐dimensional network structure, the low‐temperature phase [FeIIIHSFeIIIHS(Cl2An2?)(Cl2An.3?)2]2? valence set can be regarded as a magnetic chain‐knit network, where ferrimagnetic Δ and Λ chains of [FeIIIHS(Cl2An.3?)] are alternately linked by the diamagnetic Cl2An2?. This results in a slow magnetization behavior attributed to the structure acting as a single‐chain magnet at lower temperatures.  相似文献   

6.
Magnetite zinc oxide (MZ) (Fe3O4/ZnO) with different ratios of reduced graphene oxide (rGO) was synthesized using the solid-state method. The structural and optical properties of the nanocomposites were analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis/DRS), and photoluminescence (PL) spectrophotometry. In particular, the analyses show higher photocatalytic movement for crystalline nanocomposite (MZG) than MZ and ZnO nanoparticles. The photocatalytic degradation of methylene blue (MB) with crystalline ZnO for 1.5 h under visible light was 12%. By contrast, the photocatalytic activity for MZG was more than 98.5%. The superior photocatalytic activity of the crystalline nanocomposite was detected to be due to the synergistic effect between magnetite and zinc oxide in the presence of reduced graphene oxide. Moreover, the fabricated nanocomposite had high electron–hole stability. The crystalline nanocomposite was stable when the material was used several times.  相似文献   

7.
The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all‐solution‐processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic‐enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible‐light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade‐off for enhanced near‐band‐edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.  相似文献   

8.
采用溶胶-凝胶法制备了不同铕(Eu)掺杂量的TiO2纳米颗粒(Eu-TiO2),利用透射电镜(TEM),X射线光电子能谱(XPS),X射线衍射(XRD)及紫外可见漫反射(UV-Vis DRS)等方法对Eu-TiO2进行了物理特性的初步表征.结果表明:与未掺杂纳米TiO2比较,Eu-TiO2禁带宽度变窄,具有可见光光催化活性.在可见光下(λ≥420 nm)照射下,以光催化降解染料罗丹明B(Rhodamine B,RhB)为目标反应,探讨了Eu-TiO2不同制备条件对RhB降解光催化活性的影响,优化得到制备高活性Eu-TiO2最佳pH为3、掺杂比例(nEu/nTi)为0.05%、煅烧温度为500 ℃.研究了可见光照射下Eu-TiO2降解RhB和无色有机小分子水杨酸(SA)光催化反应条件及降解特性,RhB的12 h深度氧化矿化率为60.2%,SA的8 h降解率达到100%.通过跟踪测定可见光下Eu-TiO2光催化反应过程中氧化物种的变化,研究了可见光激发Eu-TiO2光催化反应机理,表明其光催化反应主要涉及羟基自由基(·OH)历程.  相似文献   

9.
采用分步沉积法、溶胶-凝胶法和共沉淀法分别制备了SrTi-F,SrTi-S和SrTi-C三种SrTiO3复合氧化物,XRD,UV-V is,BET,SEM,TEM和EDX对样品进行了表征,并考察了SrTiO3降解亚甲基蓝的可见光光催化活性。结果表明,SrTi-S和SrTi-C样品表现为纯钙钛矿晶相,SrTi-F样品除钙钛矿晶相外还掺杂有少量的Sr2TiO4杂晶相。光催化活性测试表明,SrTi-F表现出最高的活性,其一级反应速率常数是商用P25样品的4.6倍。杂晶相Sr2TiO4的存在有利于SrTiO3复合氧化物光生电子和空穴的传导,可提高催化剂光催化活性。  相似文献   

10.
Through the use of [Ru(bpy)3Cl2] (bpy=2,2′‐bipyridine) and [Ir(ppy)3] (ppy=phenylpyridine) as photocatalysts, we have achieved the first example of visible‐light photocatalytic radical alkenylation of various α‐carbonyl alkyl bromides and benzyl bromides to furnish α‐vinyl carbonyls and allylbenzene derivatives, prominent structural elements of many bioactive molecules. Specifically, this transformation is regiospecific and can tolerate primary, secondary, and even tertiary alkyl halides that bear β‐hydrides, which can be challenging with traditional palladium‐catalyzed approaches. The key initiation step of this transformation is visible‐light‐induced single‐electron reduction of C? Br bonds to generate alkyl radical species promoted by photocatalysts. The following carbon? carbon bond‐forming step involves a radical addition step rather than a metal‐mediated process, thereby avoiding the undesired β‐hydride elimination side reaction. Moreover, we propose that the Ru and Ir photocatalysts play a dual role in the catalytic system: they absorb energy from the visible light to facilitate the reaction process and act as a medium of electron transfer to activate the alkyl halides more effectively. Overall, this photoredox catalysis method opens new synthetic opportunities for the efficient alkenylation of alkyl halides that contain β‐hydrides under mild conditions.  相似文献   

11.
We present the formation of a nanobelt by self‐assembly of β‐benzyl GABA (γ‐aminobutyric acid). This simple γ‐amino acid building block self‐assembled to form a well‐defined nanobelt in chloroform. The nanobelt showed distinct optical properties due to π–π interactions. This new‐generation self‐assembled single amino acid may serve as a template for functional nanomaterials.  相似文献   

12.
通过在真空条件下将氯铂酸的乙醇溶液引入到钛酸纳米管内,再经过热处理制备了镶嵌铂的纳米管钛酸(简写为PNTA).X射线光电子能谱(XPS)表明氯铂酸大部分转变成Pt0和PtO,顺磁共振谱(ESR)表明在PNTA中生成了束缚单电子的氧空位,在紫外-可见扩散漫散射谱(DRS)谱上表现出对可见光有吸收能力.丙烯的可见光光催化氧化实验结果表明:在可见光激发下(λ>420nm),PNTA对丙烯的光催化去除反应具有活性.  相似文献   

13.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

14.
Metal‐free fullerene (C60) was found to be an effective catalyst for the reduction of azo groups in basic aqueous solution under UV irradiation in the presence of NaBH4. Use of NaBH4 by itself is not sufficient to reduce the azo dyes without the assistance of a metal catalyst such as Pd and Ag. Experimental and theoretical results suggest that C60 catalyzes this reaction by using its vacant orbital to accept the electron in the bonding orbital of azo dyes, which leads to the activation of the N?N bond. UV irradiation increases the ability of C60 to interact with electron‐donor moieties in azo dyes.  相似文献   

15.
AgI/MIL‐53(Fe) composites were fabricated through a simple solution method, and their photocatalytic activities on Rhodamine B (RhB) degradation were investigated. The results demonstrated that the introduction of AgI into the MIL‐53(Fe) was beneficial to the enhanced visible light response. Under visible light irradiation, almost 100 % RhB was bleached over AgI/MIL‐53(Fe) composites after 180 min. The promising photocatalytic performance was ascribed to three points: the existence of AgI helped to generate easily the electrons and holes in the composites; an intimate interfacial contact between MIL‐53 (Fe) and AgI offered the path for the charge carries transport; MIL‐53 (Fe) could fast transfer the excited electrons due to its inherent nature. Thus, these results were responsible for the effective inhibition of charge carrier recombination, resulting in an improved photocatalytic activity.  相似文献   

16.
以纳米管钛酸为前驱体,采用水热法制备了Pt掺杂TiO2样品.水热反应过程中,纳米管钛酸表面羟基与氯铂酸发生酸碱中和反应,导致反应后pH值升高;在130°C开始纳米管钛酸晶体结构由正交晶系转变为锐钛矿相TiO2.表面化学组成分析表明,掺杂的Pt主要以+2价形式存在.以丙烯为模型污染物,评价样品的可见光(λ≥420nm)光催化活性.结果表明,Pt-TiO2具有明显的可见光光催化降解丙烯的活性,其中160°C水热处理制得的Pt-TiO2活性最高.最后讨论了低温水热法Pt掺杂的形成机理及Pt-TiO2具有可见光响应的原因.  相似文献   

17.
To fully understand the fundamental properties of light‐energy‐converting materials, it is important to determine the local atomic configuration of photofunctional centers. In this study, direct imaging of one‐ and two‐Tb‐atom emission centers in a two‐dimensional Tb‐doped Ca2Ta3O10 nanocrystal was carried. The emission centers were located at the Ca sites in the perovskite structure, and no concentration‐based quenching was observed even when the emission centers were in close proximity to each other. The relative photoluminescence efficiency for green emission of the nanosheet suspension was 38.1 %. Furthermore, the Tb‐doped Ca2Ta3O10 nanocrystal deposited co‐catalyst showed high photocatalytic activity for hydrogen production from water (quantum efficiency: 71 % at 270 nm). Tb3+ dopants in the two‐dimensional crystal might have the potential to stabilize the charge separation state.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号