首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人胰岛淀粉样蛋白(hIAPP)与Ⅱ型糖尿病(T2DM)密切相关,被认为是导致胰岛β细胞凋亡的致病因素之一,研究发现环境因素(如金属离子、pH值和温度等)对hIAPP的聚集过程有很大影响。本文采用多种生物物理的实验方法,研究了二价铜离子对hIAPP及其片段聚集的影响。原子力显微镜(AFM)和硫代黄素T(ThT)荧光的测量表明,铜离子能够明显地抑制hIAPP(11~28)聚集成纤维,其抑制程度随铜离子浓度的增加而明显加剧。显微傅里叶变换红外光谱(Micro-FTIR)的结果表明,铜离子能够抑制hIAPP多肽中α螺旋结构向β折叠的转变。另外,氨基酸定点突变实验结果表明,hIAPP(11~28)中的组氨酸(His18)可能对多肽的聚集行为和金属铜离子的相互作用起到了决定性的影响。  相似文献   

2.
Amyloid self‐assembly of islet amyloid polypeptide (IAPP) is linked to pancreatic inflammation, β‐cell degeneration, and the pathogenesis of type 2 diabetes (T2D). The multifunctional host‐defence peptides (HDPs) cathelicidins play crucial roles in inflammation. Here, we show that the antimicrobial and immunomodulatory polypeptide human cathelicidin LL‐37 binds IAPP with nanomolar affinity and effectively suppresses its amyloid self‐assembly and related pancreatic β‐cell damage in vitro. In addition, we identify key LL‐37 segments that mediate its interaction with IAPP. Our results suggest a possible protective role for LL‐37 in T2D pathogenesis and offer a molecular basis for the design of LL‐37‐derived peptides that combine antimicrobial, immunomodulatory, and T2D‐related anti‐amyloid functions as promising candidates for multifunctional drugs.  相似文献   

3.
Early oligomerization of human islet amyloid polypeptide (hIAPP), which is accountable for β-cell death, has been implicated in the progression of type 2 diabetes mellitus. Some researches have shown the connection between hIAPP and Alzheimer's disease as well. However, the mechanism of peptide accumulation and associated cytotoxicity remains unclear. Due to the unique properties and significant role of histidine in protein sequences, here for the first time, the tautomeric effect of histidine at the early stages of amylin misfolding was investigated via molecular dynamics simulations. Considering Tau and Pi tautomeric forms of histidine (Tau and Pi tautomers are denoted as ϵ and δ, respectively), simulations were performed on two possible isomers of amylin. Our analysis revealed a higher probability of transient α-helix generation in the δ isomer in monomeric form. In dimeric forms, the δδ and δϵ conformations showed an elevated amount of α-helix and lower coil in comparison to the ϵϵ dimer. Due to the significant role of α-helix in membrane disruption and transition to β-sheet structure, these results may imply a noticeable contribution of the δ isomer and the δδ and δϵ dimers rather than ϵ and ϵϵ conformations in the early stages of diabetes initiation. Our results may aid in elucidating the hIAPP self-association process in the etiology of amyloidosis.  相似文献   

4.
5.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

6.
7.
Cyclic and acyclic peptides with sequences derived from metallochaperone binding sites, but differing at position 2, were analyzed for their inhibitory reactivity towards cellular ROS (reactive oxygen species) formation and catalytic activity towards oxidation with H2O2, in comparison with three commercial drugs clinically employed in chelation therapy for Wilson's disease. Acyclic peptides were more effective inhibitors than the cyclic ones, with one leading peptide with threonine at position 2 systematically showing the highest efficiency in reducing cellular ROS levels and in inhibiting Cu oxidation. This peptide was more effective than all commercial drugs in all aspects analyzed, and showed no toxicity towards human colon HT‐29 cancer cells at concentrations 10–100 times higher than the IC50 of the commercial drugs, corroborating its high medicinal potential.  相似文献   

8.
9.
The development of a highly efficient and practical protocol for the direct C?N coupling of H‐tetrazole and boronic acid was presented. A careful and patient optimization of a variety of reaction parameters revealed that this conventionally challenge reaction could indeed proceed efficiently in a very simple system, that is, just by stirring the tetrazoles and boronic acids under oxygen in the presence of different CuI or CuII salts with only 5 mol % loading in DMSO at 100 °C. Most significantly, the reaction could proceed very smoothly in a regiospecific manner to afford the 2,5‐disubstituted tetrazoles in high to excellent yields. A mechanistic study revealed that both tetrazole and DMSO are crucial for the generation of catalytically active copper species in the reaction process in addition to their role as reactant and solvent, respectively. It is demonstrated that in the reaction cycle, the CuI catalyst could be oxidized to CuII by oxygen to form a [CuT2D] complex (T=tetrazole anion; D=DMSO) through an oxidative copper amination reaction. The CuII complex thus formed was confirmed to be the real catalytically active copper species. Namely, the CuII complex disproportionates to aryl CuIII and CuI in the presence of boronic acid. Facile elimination of the CuIII species delivers the C?N‐coupled product. The results presented herein not only provide a reliable and efficient protocol for the synthesis of 2,5‐disubstituted tetrazoles, but most importantly, the mechanistic results would have broad implications for the de novo design and development of new methods for Cu‐catalyzed coupling reactions.  相似文献   

10.
A novel reagent, which introduces two sulfur atoms in one step, was designed and used for the construction of diverse disulfanes by copper‐catalyzed oxidative cross‐coupling under mild reaction conditions. By applying this stable and readily prepared reagent, late‐stage modification of pharmaceuticals and natural products can be achieved straightforward. The scaled‐up experiments further indicated the practicality of this protocol. The pH value of the system plays a key role in achieving highly selective cleavage of the C?S bond instead of a S?S bond in the transformation.  相似文献   

11.
12.
Theoretical investigations of CO2 sorption are performed in four members of the highly tunable rht‐metal–organic framework (MOF) platform. rht‐MOFs contain two Cu2+ ions that comprise the metal paddlewheels and both are in chemically distinct environments. Indeed, one type of Cu2+ ion faces toward the center of the linker whereas the other type faces away from the center of the linker. Electronic structure calculations on the series of rht‐MOFs demonstrate that one of the Cu2+ ions has a consistently higher charge magnitude relative to the other. As a consequence, the Cu2+ ion with the higher partial positive charge acts as the favored sorbate binding site at initial loading as revealed by grand canonical Monte Carlo (GCMC) simulations that include many‐body polarization. It was found that the charge distribution about the copper paddlewheels is dependent on the type of functional groups present on the linker. This study demonstrates how the binding site about the metal paddlewheels in the rht‐MOF platform can be controlled by changing the functionality on the organic ligand.  相似文献   

13.
Trifluoromethylation reactions have recently received increased attention because of the beneficial effect of the trifluoromethyl group on the pharmacological properties of numerous substances. A common method to introduce the trifluoromethyl group employs the Ruppert–Prakash reagent, that is, Si(CH3)3CF3, together with a copper(I) halide. We have applied this method to the trifluoromethylation of aromatic alkynes and used electrospray‐ionization mass spectrometry to investigate the mechanism of these reactions in tetrahydrofuran, dichloromethane, and acetonitrile as well as with and without added 1,10‐phenanthroline. In the absence of the alkyne component, the homoleptic ate complexes [Cu(CF3)2]? and [Cu(CF3)4]? were observed. In the presence of the alkynes RH, the heteroleptic complexes [Cu(CF3)3R]? were detected as well. Upon gas‐phase fragmentation, these key intermediates released the cross‐coupling products R?CF3 with perfect selectivity. Apparently, the [Cu(CF3)3R]? complexes did not originate from homoleptic cuprate anions, but from unobservable neutral precursors. The present results moreover point to the involvement of oxygen as the oxidizing agent.  相似文献   

14.
Postsynthetic metal and ligand exchange is a versatile approach towards functionalized MFU‐4l frameworks. Upon thermal treatment of MFU‐4l formates, coordinatively strongly unsaturated metal centers, such as zinc(II) hydride or copper(I) species, are generated selectively. CuI‐MFU‐4l prepared in this way was stable under ambient conditions and showed fully reversible chemisorption of small molecules, such as O2, N2, and H2, with corresponding isosteric heats of adsorption of 53, 42, and 32 kJ mol?1, respectively, as determined by gas‐sorption measurements and confirmed by DFT calculations. Moreover, CuI‐MFU‐4l formed stable complexes with C2H4 and CO. These complexes were characterized by FTIR spectroscopy. The demonstrated hydride transfer to electrophiles and strong binding of small gas molecules suggests these novel, yet robust, metal–organic frameworks with open metal sites as promising catalytic materials comprising earth‐abundant metal elements.  相似文献   

15.
Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK‐Acr) has been designed that targets G‐quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK‐Acr catalyst to selectively bind and cleave the G‐quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) experiments. CuGGHK‐Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7.  相似文献   

16.
17.
Chiral supramolecular compounds with substituents at different positions show different binding properties with human telomeric G‐quadruplex DNA. These different positions of methyl substitution in chiral supramolecular compounds can modulate their enantioselectivity and structural preference when binding with human telomeric G‐quadruplex DNA.  相似文献   

18.
In the present work, a new electrochemical strategy for the sensitive and specific detection of soluble β‐amyloid Aβ(1–40/1–42) peptides in a rat model of Alzheimer’s disease (AD) is described. In contrast to previous antibody‐based methods, β‐amyloid(1–40/1–42) was quantified based on its binding to gelsolin, a secretory protein present in the cerebrospinal fluid (CSF) and plasma. The level of soluble β‐amyloid peptides in the CSF and various brain regions were found with this method to be lower in rats with AD than in normal rats.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号