首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

2.
Hpn, one of Helicobacter pylori′s nickel‐accessory proteins, is an amazingly peculiar protein: Almost half of its sequence consists of polyhistidyl (poly‐His) residues. Herein, we try to understand the origin of this naturally occurring sequence, thereby shedding some light on the bioinorganic chemistry of Hpn′s numerous poly‐His repeats. By using potentiometric, mass spectrometric, and various spectroscopic techniques, we studied the NiII‐ and CuII complexes of the wild‐type Ac‐THHHHYHGG‐NH2 fragment of Hpn and of its six analogues, in which consecutive residues (His or Tyr) were replaced by Ala (Ala‐substitution or Ala‐scan approaches), thereby resulting in Ac‐TAHHHYHGG‐NH2, Ac‐THAHHYHGG‐NH2, Ac‐THHAHYHGG‐NH2, Ac‐THHHAYHGG‐NH2, Ac‐THHHHAHGG‐NH2, and Ac‐THHHHYAGG‐NH2 peptides. We found that the His4 residue is critical for both NiII‐ and CuII‐ion binding and the effectiveness of binding varies even if the substituted amino acid does not take part in the direct binding interactions.  相似文献   

3.
The host–guest interaction between metal ions (Pt2+ and Cu2+) and a zirconium metal–organic framework (UiO‐66‐NH2) was explored using dynamic nuclear polarization‐enhanced 15N{1H} CPMAS NMR spectroscopy supported by X‐ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt2+ coordinates with two NH2 groups from the MOF and two Cl? from the metal precursor, whereas Cu2+ do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt2+ prefers a square‐planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.  相似文献   

4.
Interest in the 37-residue human islet amyloid polypeptide (hIAPP) is related to its ability to form amyloid deposits in patients affected by type II diabetes. Attempts to unravel the molecular features of this disease have indicated several regions of this polypeptide to be responsible for either the ability to form insoluble fibrils or the abnormal interaction with membranes. To extend these studies to peptides that enclose His18, whose ionization state is believed to play a key role in the aggregation of hIAPP, we report on the synthesis of two peptides, hIAPP17-29 and rIAPP17-29, encompassing the 17-29 sequences of human and rat IAPP, respectively, as well as on their conformational features in water and in several membrane-mimicking environments as revealed by circular dichroism (CD) and 2D-NMR studies. hIAPP17-29 adopts a beta-sheet structure in water and its solubility increases at low pH. Anionic sodium dodecyl sulfate (SDS) micelles promoted the formation of an alpha-helical structure in the peptide chain, which was poorly influenced by pH variations. rIAPP17-29 was soluble and unstructured in all the environments investigated, with a negligible effect of pH. The membrane interactions of hIAPP17-29 and rIAPP17-29 were assessed by recording differential scanning calorimetry (DSC) measurements aimed at elucidating the peptide-induced changes in the thermotropic behaviour of zwitterionic (DPPC) and negatively charged (DPPC/DPPS 3:1) model membranes (DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPS=1,2-dipalmitoyl-sn-glycero-3-phosphoserine). Results of DSC experiments demonstrated the high potential of hIAPP17-29 to interact with DPPC membranes. hIAPP17-29 exhibited a negligible affinity for negatively charged DPPC/DPPS model membranes at neutral pH. On the other hand, rIAPP17-29 did not interact with neutral or negatively charged membranes. The role played by His18 in the modulation of the biophysical properties of this hIAPP region was assessed by synthesising and studying the R18HrIAPP17-29 peptide; the replacement of a single Arg with a His residue is not sufficient to induce either amyloidogenic propensity or membrane interaction in this region. The results show that the 17-29 domain of hIAPP has many properties of the full-length protein "in vitro" and this opens up new perspectives for both research and eventually therapy.  相似文献   

5.
Triclinic single crystals of Cu4(H3N–(CH2)9–NH3)(OH)2[C6H2(COO)4]2 · 5H2O were prepared in aqueous solution at 80 °C in the presence of 1,9‐diaminononane. Space group P$\bar{1}$ (no. 2) with a = 1057.5(2), b = 1166.0(2), c = 1576.7(2) pm, α = 106.080(10)°, β = 90.73(2)° and γ = 94.050(10)°. The four crystallographic independent Cu2+ ions are surrounded by five oxygen atoms each with Cu–O distances between 191.4(3) and 231.7(4) pm. The connection between the Cu2+ coordination polyhedra and the [C6H2(COO)4]4– anions yields three‐dimensional framework with negative excess charge and wide centrosymmetric channel‐like voids. These voids extend parallel to [001] with the diagonal of the nearly rectangular cross‐section of approximately 900 pm. The channels of the framework accommodate [H3N–(CH2)9–NH3]2+ cations and water molecules, which are not connected to Cu2+. The nonane‐1,9‐diammonium cations adopt a partial gauche conformation. Thermoanalytical measurements in air show a loss of water of crystallization starting at 90 °C and finishing at approx. 170 °C. The dehydrated compound is stable up to 260 °C followed by an exothermic decomposition yielding copper oxide.  相似文献   

6.
The molecular steps involved in the self‐assembly of Cu3(BTC)2 (BTC=1,3,5‐benzenetricarboxylic acid) metal–organic frameworks that enclose Keggin‐type H3PW12O40 heteropolyacid molecules were unraveled by using solution 17O, 31P, and 183W NMR spectroscopy, small‐angle X‐ray scattering, near‐IR spectroscopy, and dynamic light scattering. In aqueous solution, complexation of Cu2+ ions with Keggin‐type heteropolyacids was observed. Cu2+ ions are arranged around the Keggin structure so that linking through benzenetricarboxylate groups results in the formation of the Cu3(BTC)2 MOF structure HKUST‐1. This is a unique instance in which a templating mechanism that relies on specific molecular‐level matching and leads to explicit nanoscale building units can be observed in situ during formation of the synthetic nanoporous material.  相似文献   

7.
Operando X‐ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu‐exchanged SSZ‐13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO‐assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu‐bound NO2 with proximal NH4+ completes the catalytic cycle. N2 is produced in both reduction and oxidation half‐cycles.  相似文献   

8.
Previous studies into the dissociation of [CuII(dien)peptide] . 2+ ions (dien = diethylenetriamine) have shown that NH‐containing auxiliary ligands do not favor the formation of [peptide] . + species; instead, they promote proton‐transfer reactions, especially for peptides containing basic amino residues. Formation of radical cationic tripeptides of the form GGX . + [GGX = glycylglycyl(residue X)] becomes feasible upon substituting the open‐chain tridentate ligand dien with its analogous cyclic ligand, 1,4,7‐triazacyclononane (9‐aneN3); i.e., from [CuII(9‐aneN3)GGX] . 2+ ions. Similar enhancements occur when using 1,4,7,10‐tetraoxacyclododecane (12‐crown‐4) in place of its open‐chain analog, 2,5,8,11‐tetraoxadecane (triglyme). We have demonstrated that a sterically encumbered auxiliary macrocyclic ligand within [CuII(L)GGX] . 2+ complex ions [where L = 9‐aneN3 or 12‐crown‐4] facilitates the formation of radical cationic peptides through gas‐phase fragmentation. We verified our experimental observations by examining the reactivities of a series of 19 tripeptides of the type GGX that differ only in the identity of their C‐terminal residue. The energy of the electron‐transfer reaction correlates well with the bond‐dissociation energy of the peptide–Cu(II) interaction; the presence of a constrained macrocyclic ligand weakens metal–peptide chelation through steric repulsion between the ligand and the peptide, and this situation may lead to more favorable radical cationic peptide formation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A new tetranuclear CuII–HgII–HgII–CuII complex, [Cu2Hg2Cl4(C18H18N2O2)2], has been prepared by means of a copper complex found in the literature. The molecular structure of this complex was determined by X‐ray diffraction and the Cu–Hg–Hg–Cu chain was seen to be non‐linear. The change in magnetic susceptibility with temperature was recorded for this complex and observed to abide by the Curie–Weiss law. The coordination around the HgII ions is square pyramidal. The Cu?Hg bridging distance is 3.5269 (7) Å.  相似文献   

10.
Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that influences development, maintenance, survival, and synaptic plasticity of central and peripheral nervous systems. Altered BDNF signaling is involved in several neurodegenerative disorders including Alzheimer’s disease. Metal ions may influence the BDNF activity and it is well known that the alteration of Cu2+ homeostasis is a prominent factor in the development of neurological pathologies. The N‐terminal domain of BDNF represents the recognition site of its specific receptor TrkB, and metal ions interaction with this protein domain may influence the protein/receptor interaction. In spite of this, no data inherent the interaction of BDNF with Cu2+ ions has been reported up to now. Cu2+ complexes of the peptide fragment BDNF(1–12) encompassing the sequence 1–12 of N‐terminal domain of human BDNF protein were characterized by means of potentiometry, spectroscopic methods (UV/Vis, CD, EPR), parallel tempering simulations and DFT‐geometry optimizations. Coordination features of the acetylated form, Ac‐BDNF(1–12), were also characterized to understand the involvement of the terminal amino group. Whereas, an analogous peptide, BDNF(1–12)D3N, in which the aspartate residue was substituted by an asparagine, was synthesized to provide evidence on the possible role of carboxylate group in Cu2+ coordination. The results demonstrated that the amino group is involved in metal binding and the metal coordination environment of the predominant complex species at physiological pH consisted of one amino group, two amide nitrogen atoms, and one carboxylate group. Noteworthy, a strong decrease of the proliferative activity of both BDNF(1–12) and the whole protein on a SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu2+. The effect of metal addition is opposite to that observed for the analogous fragment of nerve growth factor (NGF) protein, highlighting the role of specific domains, and suggesting that Cu2+ may drive different pathways for the BDNF and NGF in physiological as well as pathological conditions.  相似文献   

11.
The competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solutions by the copolymer of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and itaconic acid (IA), P(AMPS‐co‐IA), was investigated. Homopolymer of AMPS (PAMPS) was also used to remove these ions from their aqueous solution. In the preparation of AMPS–IA copolymer, the molar percentages of AMPS and IA were 80 and 20, respectively. In order to observe the changes in the structures of polymers due to metal adsorption, FTIR spectra by attenuated total reflectancetechnique and scanning electron microscopy (SEM) pictures of the polymers were taken both before and after adsorption experiments. Total metal ion removal capacities of PAMPS and P(AMPS‐co‐IA) were 1.685 and 1.722 mmol Me2+/gpolymer, respectively. Experimental data were evaluated to determine the kinetic characteristics of the adsorption process. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions onto both PAMPS and P(AMPS‐co‐IA) was found to fit pseudo‐second‐order type kinetics. In addition, the removal orders in the competitive adsorption of these metal ions onto PAMPS and P(AMPS‐co‐IA) were found to be Cd2+ > Pb2+ > Cu2+ and Pb2+ > Cd2+ > Cu2+, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Designing small peptides that are capable of binding Cu2+ ions mainly through the side‐chain functionalities is a hard task because the amide nitrogen atoms strongly compete for Cu2+ ion coordination. However, the design of such peptides is important for obtaining biomimetic small systems of metalloenyzmes as well as for the development of artificial systems. With this in mind, a cyclic decapeptide, C‐Asp, which contained three His residues and one Asp residue, and its linear derivative, O‐Asp, were synthesized. The C‐Asp peptide has two Pro? Gly β‐turn‐inducer units and, as a result of cyclization, and as shown by CD spectroscopy, its backbone is constrained into a more defined conformation than O‐Asp, which is linear and contains a single Pro? Gly unit. A detailed potentiometric, mass spectrometric, and spectroscopic study (UV/Vis, CD, and EPR spectroscopy) showed that at a 1:1 Cu2+/peptide ratio, both peptides formed a major [CuHL]2+ species in the pH range 5.0–7.5 (C‐Asp) and 5.5–7.0 (O‐Asp). The corrected stability constants of the protonated species (log K*CuH(O?Asp)=9.28 and log K*CuH(C?Asp)=10.79) indicate that the cyclic peptide binds Cu2+ ions with higher affinity. In addition, the calculated value of Keff shows that this higher affinity for Cu2+ ions prevails at all pH values, not only for a 1:1 ratio but even for a 2:1 ratio. The spectroscopic data of both [CuHL]2+ species are consistent with the exclusive coordination of Cu2+ ions by the side‐chain functionalities of the three His residues and the Asp residue in a square‐planar or square‐pyramidal geometry. Nonetheless, although these data show that, upon metal coordination, both peptides adopt a similar fold, the larger conformational constraints that are present in the cyclic scaffold results in different behaviour for both [CuHL]2+ species. CD and NMR analysis revealed the formation of a more rigid structure and a slower Cu2+‐exchange rate for [CuH(C‐Asp)]2+ compared to [CuH(O‐Asp]2+. This detailed comparative study shows that cyclization has a remarkable effect on the Cu2+‐coordination properties of the C‐Asp peptide, which binds Cu2+ ions with higher affinity at all pH values, stabilizes the [CuHL]2+ species in a wider pH range, and has a slower Cu2+‐exchange rate compared to O‐Asp.  相似文献   

13.
Metal–ligand coordination is a key interaction in the self‐assembly of both biopolymers and synthetic oligomers. Although the binding of metal ions to synthetic proteins and peptides is known to yield high‐order structures, the self‐assembly of peptidomimetic molecules upon metal binding is still challenging. Herein we explore the self‐assembly of three peptoid trimers bearing a bipyridine ligand at their C‐terminus, a benzyl group at their N‐terminus, and a polar group (N‐ethyl‐R) in the middle position (R=OH, OCH3, or NH2) upon Cu2+ coordination. X‐ray diffraction analysis revealed unique, highly symmetric, dinuclear cyclic structure or aqua‐bridged dinuclear double‐stranded peptoid helicates, formed by the self‐assembly of two peptoid molecules with two Cu2+ ions. Only the macrocycle with the highest number of intermolecular hydrogen bonds is stable in solution, while the other two disassemble to their corresponding monometallic complexes.  相似文献   

14.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

15.
The relationship between peptide structure and electron transfer dissociation (ETD) is important for structural analysis by mass spectrometry. In the present study, the formation, structure and reactivity of the reaction intermediate in the ETD process were examined using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. ETD product ions of zwitterionic tryptophan (Trp) and Trp‐containing dipeptides (Trp‐Gly and Gly‐Trp) were detected without reionization using non‐covalent analyte complexes with Ca2+ and 18‐crown‐6 (18C6). In the collision‐induced dissociation, NH3 loss was the main dissociation pathway, and loss related to the dissociation of the carboxyl group was not observed. This indicated that Trp and its dipeptides on Ca2+(18C6) adopted a zwitterionic structure with an NH3+ group and bonded to Ca2+(18C6) through the COO? group. Hydrogen atom loss observed in the ETD spectra indicated that intermolecular electron transfer from a molecular anion to the NH3+ group formed a hypervalent ammonium radical, R‐NH3, as a reaction intermediate, which was unstable and dissociated rapidly through N–H bond cleavage. In addition, N–Cα bond cleavage forming the z1 ion was observed in the ETD spectra of Trp‐GlyCa2+(18C6) and Gly‐TrpCa2+(18C6). This dissociation was induced by transfer of a hydrogen atom in the cluster formed via an N–H bond cleavage of the hypervalent ammonium radical and was in competition with the hydrogen atom loss. The results showed that a hypervalent radical intermediate, forming a delocalized hydrogen atom, contributes to the backbone cleavages of peptides in ETD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The bitopic ligand 1,2‐bis(1,2,4‐triazol‐4‐yl)ethane (tr2eth) provides an unprecedented short‐distance N1:N2‐triazole bridging of CuI and VIV ions in poly[bis[μ4‐1,2‐bis(1,2,4‐triazol‐4‐yl)ethane]di‐μ2‐fluorido‐tetrafluoridodi‐μ2‐oxido‐dicopper(I)divanadium(IV)], [Cu2V2F6O2(C6H8N6)2]n. The CuI ions and tr2eth linkers afford a two‐dimensional square‐grid topology involving centrosymmetric (tr)Cu(μ‐tr)2Cu(tr) [tr is triazole; Cu—N = 1.9525 (16)–2.0768 (18) Å] binuclear net nodes, which are expanded in a third dimension by centrosymmetric [V2O2F6]2− pillars. The concerted μ‐tr and μ‐O bridging between the CuI and VIV ions allows a multi‐centre accommodation of the vanadium oxyfluoride moiety on a cationic Cu/tr2eth matrix [Cu—O = 2.1979 (15) Å and V—N = 2.1929 (17) Å]. The distorted octahedral coordination of [VONF4] is completed by two terminal and two bridging F ions [V—F = 1.8874 (14)–1.8928 (13) and 2.0017 (13)–2.1192 (12) Å, respectively]. The resulting three‐dimensional framework has a primitive cubic net topology and adopts a threefold interpenetration.  相似文献   

17.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

18.
In this work, an “on–off–on” switch system has been successfully applied through the construction of an electrochemiluminscent biosensor for copper ion (Cu2+) detection based on a new electrochemiluminescence (ECL) emitter of supramolecular nanorods, which was achieved through supramolecular interactions between 3,4,9,10‐perylenetetracarboxylic acid (PTCA) and aniline. The initial “signal‐on” state with strong and stable ECL emission was obtained by use of the supramolecular nanorods with a new signal amplification strategy involving a co‐reaction accelerator. In addition, ECL quencher probes (Fc‐NH2/Cu‐Sub/nano‐Au) were fabricated by immobilizing aminoferrocene (Fc‐NH2) on Cu‐substrate strand modified Au nanoparticles. The quencher probes were hybridized with the immobilized Cu‐enzyme strand to form Cu2+‐specific DNAzyme. Similarly, the “signal‐off” state was obtained by the high quenching effect of Fc‐NH2 on the ECL of the excited‐state PTCA (1PTCA*). As expected, the second “switch‐on” state could achieved by incubating with the target Cu2+, owing to the Cu2+‐specific DNAzyme, which was irreversibly cleaved, resulting in the release of the quencher probes from the sensor interface. Herein, on the basis of the ECL intensity changes (ΔIECL) before and after incubating with the target Cu2+, the prepared Cu2+‐specific DNAzyme‐based biosensor was used for the determination of Cu2+ concentrations with high sensitivity, excellent selectivity, and good regeneration.  相似文献   

19.
Two new three‐dimensional frameworks with zeolite‐like channels were prepared in the presence of 1,6‐diaminohexane. Cu1.5(H3N–(CH2)6–NH3)0.5[C6H2(COO)4] · 5H2O ( 1 ) crystallizes in the triclinic space group P$\bar{1}$ with a = 772.56(7), b = 1110.36(7), c = 1111.98(8) pm, α = 98.720(7)°, β = 108.246(9)°, and γ = 95.559(7)°. Cu2(H3N–(CH2)6–NH3)0.5(OH)[C6H2(COO)4] · 3H2O ( 2 ) crystallizes in the monoclinic space group P2/c with a = 1159.34(11), b = 1059.44(7), c = 1582.2(2) pm, and β = 106.130(11)°. The Cu2+ coordination polyhedra are connected by [C6H2(COO)4]4– anions to yield three‐dimensional frameworks with wide centrosymmetric channel‐like voids. Complex 1 reveals voids extending along [100] with diagonals of 900 pm and 300 pm, whereas in complex 2 the diagonal of the nearly rectangular crossection of the channels extending parallel to [001] is 900 pm. The negative excess charges of the frameworks are compensated by [H3N–(CH2)6–NH3]2+ cations, which occupy the voids along with water molecules. The [H3N–(CH2)6–NH3]2+ cations are not connected to Cu2+ and have served as templates.  相似文献   

20.
The present study reports the development of a unique class of Cytochrome C (CytC)‐loaded cross‐beta amyloid nanohybrids. The peroxidase activity of the bound CytC increased up to two orders of magnitude in organic solvents compared to the activity of unbound CytC in water. The amyloid sequences used in the study feature the nucleating core 17LVFF21 of the beta amyloid (Aβ), which assembled to form homogenous fibers and nanotubes. The morphology and exposed surface of the amyloid nanohydrids critically modulated the CytC activity. A CytC–Ac‐KLVFFAE‐NH2 hybrid featuring nanofiber morphology showed 308‐fold higher activity than unbound CytC in water, which increased to 450‐fold with the nanotube morphology of CytC–Ac‐KLVFFA L ‐NH2. Notably, activity declined substantially when the exposed surface charge was detuned by replacing lysine with histidine, thus underpinning the importance of surface charge. This enzyme–amyloid nanohybrid system could facilitate the technological application of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号