首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of N‐methyl‐3,4‐fulleropyrrolidine (NMFP) derivatives were designed by selecting different π‐conjugated linkers and electron‐donating groups as D‐π‐A and D‐A systems. The optimised structures and photo‐physical properties of NMFP and its derivatives have been determined using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods with the B3LYP functional and the 6‐31G basis set. According to the computation analysis, both the π‐conjugated linkers and the electron‐donating groups can influence the electronic and photo‐physical properties of the NMFP derivatives. Our calculated results demonstrated that the electron‐donating groups, with significant electron‐donating ability, had the tendency to increase the highest occupied molecular orbital (HOMO) energy. The π‐conjugated linkers with lower resonance energy decreased the lowest occupied molecular orbital (LUMO) energy and caused a significant decrease in the energy gap (Eg) between the EHOMO and ELUMO. A Natural Bond Orbital (NBO) analysis examines the effect of the electron‐donating group, π conjugated linker, and electron‐withdrawing group for these NMFP derivatives. For the NMFP derivatives, a projected density of state (PDOS) analysis demonstrated that the electron density of HOMO and LUMO are concentrated on the electron‐donating group and the π‐conjugated linker, respectively. A TD‐DFT/B3LYP calculation was performed to calculate the electronic absorption spectra of these NMFP derivatives. Both the electron‐donating group and the π‐conjugated linker contribute to the major absorption peaks, which are assigned as HOMO to LUMO transitions and are red‐shifted relative to those of non‐substituted NMFP.  相似文献   

2.
Energetic compounds that incorporate multiple nitrogen‐rich heterocycles are of great interest for high‐density energetic materials. A facile synthetic strategy to combine an oxy bridge and furazan groups, as well as tetrazole‐ols, into a molecule ( 5 ) was found. Some energetic salts based on 5 were prepared by neutralization. All of the compounds were fully characterized. Additionally, the structure of 7 has been elucidated by single‐crystal XRD analysis. Physicochemical and energetic properties were also studied; these show that these newly designed energetic salts exhibit good thermal stabilities. Hydroxylammonium salt ( 6 ) has a detonation performance and sensitivities comparable with those of 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX).  相似文献   

3.
A family of 4,4′,6,6′‐tetra(azido)azo‐1,3,5‐triazine‐N‐oxides was designed and investigated by theoretical method. The effects of the N→O bond on the properties of TAAT‐N‐oxides, such as density, heat of formation, and detonation performance, were discussed. By comparison with the bond‐dissociation energy of the weakest bond and the electrostatic potentials, the effects of the N→O bond on the stability and impact sensitivity of organic azides were also discussed. The results show that the introduction of N→O bonds at the appropriate positions increases the oxygen balance and density of the compounds, while it has little effect on the stability and impact sensitivity. Consequently, their introduction results in energetic compounds with improved detonation performances.  相似文献   

4.
A series of nitroguanidine‐fused bicyclic guanidinium energetic salts paired with inorganic energetic anions, mono‐ and di‐tetrazolate anions were synthesized through simple metathesis reactions of 2‐iminium‐5‐nitriminooctahydroimidazo[4,5‐d]imidazole chloride and sulfate with the corresponding silver and barium salts, respectively, in aqueous solution. Key physical properties, such as melting point, thermal stability, and density were measured. The relationship between the structures of the salts and these properties was determined. The salts exhibit thermal stability and density (>1.60 g cm?3) that are comparable to currently used explosives The structures of the nitrate salt 1 and the dinitrocyanomethanide salt 4 were confirmed by single‐crystal X‐ray analysis. Densities, heats of formation, detonation pressures and velocities, and specific impulses were calculated. All of the salts possess positive calculated heats of formation and most of them exhibit promising energetic performance that is comparable with those of 1,3,5‐trinitrobenzene (TNT), 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB), and cyclotrimethylenetrinitramine (RDX). The effect of the fused bicycle 2‐iminium‐5‐nitriminooctahydroimidazo[4,5‐d]imidazole on these physicochemical properties was examined and discussed.  相似文献   

5.
A planar energetic molecule with high density, 5,5′‐dinitramino‐3,3′‐azo‐1,2,4‐oxadiazole ( 4 ), was obtained by the nitration of 5,5′‐diamino‐3,3′‐azo‐1,2,4‐oxadiazole using 100 % nitric acid. In addition, selected nitrogen‐rich salts were prepared. Of them, the neutral compound 4 and its hydroxylammonium salt, 6 , were further confirmed by single‐crystal X‐ray diffraction. Physicochemical and energetic properties including density, thermal stability, and sensitivity were investigated. The energetic performance from the calculated heats of formation and experimental densities indicates that many of them have potential applications as energetic materials.  相似文献   

6.
Shape memory composites of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon nanotubes (CNTs) were introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal, and shape memory properties of the TPI/LDPE/CNTs composites were investigated in this study. In these composites, the cross‐linked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a domain of reversible shape memory behavior. We found that CNTs acted as not only reinforced fillers but also nucleation agents, which improved the crystalline degree of the TPI and LDPE portions of the composites. Compared with the properties at the other CNT doses, the mechanical properties of the TPI/LDPE composites when the CNT dose was 1 phr were improved significantly, showing excellent shape memory properties (Rf = 97.85%, Rr = 95.70%).  相似文献   

7.
The high‐pressure clinopyroxene mineral jadeite (chemical composition NaAlSi2O6) was studied by density‐functional theory with respect to its electronic, vibrational, and thermodynamic properties, correctly reproducing the available experimental data. At a larger‐than‐normal volume, however, a low‐density alumosilicate phase with tetrahedral instead of octahedral Al–O coordination was identified. This low‐density phase was investigated theoretically, too, and the results were compared to jadeite and experimentally observed properties of what has been dubbed jadeite glass. It turned out that the theoretically obtained properties of this hypothetical polymorph, such as the bulk modulus, the molar volume and the vibrational frequencies, agree well with the corresponding properties of the glass phase. Hence, from an inverse structure‐property relationship we propose to model jadeite glass with the aforementioned low‐density alumosilicate phase and tetrahedral Al–O motifs, as suggested from first principles and corroborated from experiment. The possibilities as well as the limitations of electronic, phonon and thermodynamic properties calculations applied to such a polymorph are also discussed.  相似文献   

8.
Photo absorption properties of p‐coumaric acid, the chromophore of photoactive yellow protein, in aqueous solution were investigated by means of reference interaction site model self‐consistent field with spatial electron density distribution (RISM‐SCF‐SEDD) method. RISM‐SCF‐SEDD is a combination methodology of electronic structure theory and statistical mechanics for molecular liquids. Here, time‐dependent density functional theory was coupled with RISM equation to study the electronic structure of p‐coumaric acid in aqueous system. Excitation energies of the chromophore in its neutral, two monoanionic and dianionic forms were computed to elucidate the effect of the deprotonation and solvation on the spectroscopic properties. We found that solvation strongly affects the excitation character of the chromophore, especially for phenolate anion and dianion. The free energy difference among the four protonation states is also discussed. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

10.
The spatial arrangement of the side chains of conjugated polymer backbones has critical effects on the morphology and electronic and photophysical properties of the corresponding bulk films. The effect of the side‐chain‐distribution density on the conformation at the isolated single‐polymer‐chain level was investigated with regiorandom (rra‐) poly(3‐hexylthiophene) (P3HT) and poly(3‐hexyl‐2,5‐thienylene vinylene) (P3HTV). Although pure P3HTV films are known to have low fluorescence quantum efficiencies, we observed a considerable increase in fluorescence intensity by dispersing P3HTV in poly(methyl methacrylate) (PMMA), which enabled a single‐molecule spectroscopy investigation. With single‐molecule fluorescence excitation polarization spectroscopy, we found that rra‐P3HTV single molecules form highly ordered conformations. In contrast, rra‐P3HT single molecules, display a wide variety of different conformations from isotropic to highly ordered, were observed. The experimental results are supported by extensive molecular dynamics simulations, which reveal that the reduced side‐chain‐distribution density, that is, the spaced‐out side‐chain substitution pattern, in rra‐P3HTV favors more ordered conformations compared to rra‐P3HT. Our results demonstrate that the distribution of side chains strongly affects the polymer‐chain conformation, even at the single‐molecule level, an aspect that has important implications when interpreting the macroscopic interchain packing structure exhibited by bulk polymer films.  相似文献   

11.
《中国化学会会志》2018,65(8):932-939
1‐(3‐amino‐4‐thia‐1,2‐diazaspiro[4.11]hexadec‐2‐en‐1‐yl)ethan‐1‐one was synthesized and experimentally characterized by using FT‐IR, 1H NMR, 13C NMR, and UV–Vis spectroscopy. The structure of the compound was confirmed by single‐crystal X‐ray diffraction. In the crystal structure, the molecules are linked by pairs of N‐H⋯N hydrogen bonds, forming centrosymmetric dimers with the graph‐set motif. The water molecule also plays an important role in the stabilization of the crystal structure, bridging the dimers to form a two‐dimensional supramolecular network. The molecular geometry, frontier molecular orbitals, vibrational frequencies, electronic properties, and molecular electrostatic potential were calculated using density functional theory (DFT) with the B3LYP/6‐311G(d,p) basis set. Geometric parameters, vibrational assignments, and electronic properties such as calculated energies, excitation energies, and oscillator strengths were compared with the experimental data, and it was seen that the theoretical results support the experimental parameters.  相似文献   

12.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

13.
Three new donor–acceptor‐type copolymers ( P1 , P2 , P3 ) consisting of dicyanofluorene as acceptor and various donor moieties were designed and synthesized. Optoelectronic properties were studied in detail by means of UV‐visible absorption and fluorescence spectroscopy, cyclic voltammetry, space‐charge‐limited current (SCLC), flash‐photolysis time‐resolved microwave conductivity (FP‐TRMC), and density functional theory (DFT). All polymers showed strong absorption in the UV‐visible region and the absorption maximum undergoes redshift with an increasing number of thiophene units in the polymer backbone. SCLC analysis showed that the electron mobilities of the polymers in the bulk state were 1 to 2 orders higher than that of the corresponding hole mobilities, which indicated the n‐type nature of the materials. By using FP‐TRMC, the intrapolymer charge‐carrier mobility was assessed and compared with the interpolymer mobility obtained by SCLC. The polymers exhibited good electron‐accepting properties sufficiently high enough to oxidize the excited states of regioregular poly(3‐hexylthiophene) (P3HT (donor)), as evident from the FP‐TRMC analysis. The P3 polymer exhibited the highest FP‐TRMC transients in the pristine form as well as when blended with P3HT. Use of these polymers as n‐type materials in all‐polymer organic solar cells was also explored in combination with P3HT. In accordance with the TRMC results, P3 exhibited superior electron‐transport and photovoltaic properties to the other two polymers, which is explained by the distribution of the energy levels of the polymers by using DFT calculations.  相似文献   

14.
The application of surface‐attached, thiol‐ene polymer films for controlling material properties in a gradient fashion across a surface was investigated. Thiol‐ene films were attached to the surface by first depositing a thiol‐terminated self‐assembled monolayer and performing a thiol‐ene photopolymerization reaction on the surface. Property gradients were created either by creating and modifying a gradient in the surface thiol density in the SAM or by changing the polymerization conditions or both. Film thickness was modified across the substrate by changing either the density of the anchoring thiol functional groups or by changing the reaction conditions such as exposure time. Thicker films (1–11 nm) were obtained by polymerizing acrylate polymer brushes from the surface with varying exposure time (0–60 s). The two factors, that is, the surface thiol density and the exposure time, were combined in orthogonal directions to obtain thiol‐ene films with a two‐dimensional thickness gradient with the maximum thickness being 4 nm. Finally, a thiol‐acrylate Michael type addition reaction was used to modify the surface thiol density gradient with the cell‐adhesive ligand, Arg‐Gly‐Asp‐Ser (RGDS), which subsequently yielded a gradient in osteoblast density on the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7027–7039, 2006  相似文献   

15.
The properties of 2‐Nitrimino‐1‐nitroimidazolidine are calculated by using SIESTA code, which adopts the standard Kohn‐Sham self‐consistent density functional method in the local density approximation. The structures and electronic properties are analyzed, and the factors that affect the impact sensitivity are discussed based on the crystal structure, band energy, and projected density of state. The reason for the smaller impact sensitivity compared to RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine) is also explored from several respects such as the weakest bond dissociation energy in single molecule, and hydrogen bond, band gap in the crystal. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
付东  闫淑梅  王学敏 《中国化学》2008,26(2):269-275
分别用改进的基础测量理论和平均球近似理论表达短程作用和长程作用对四缔合Lennard-Jones流体的过剩自由能的贡献. 在密度函泛理论的框架下, 研究了平均密度等温线, 密度分布, 未缔合分子在平衡汽相和液相中的分布, 相平衡以及平衡时的界面张力等热力学性质. 分析了缔合能量, 流体-固体作用和孔宽对受限于纳米狭缝中的四缔合Lennard-Jones流体相行为的影响.  相似文献   

17.
The paper presents the electrostatic charge dissipative (ESD) properties of the conducting copolymers of aniline (AN) and 1‐amino‐2‐naphthol‐4‐sulfonic acid (ANSA) blended with low‐density polyethylene (LDPE). The copolymers of aniline and ANSA were synthesized under different reaction conditions. Blending of copolymers with LDPE was carried out in twin screw extruder by melt blending method by loading 0.5 and 1.0 wt% of the conducting copolymer in LDPE matrix. The mechanical properties of the blended films depend on the incorporation of copolymer in the LDPE matrix. The morphology of copolymer–LDPE blend was studied by scanning electron microscopy. The conductivity of the blown film of poly(AN‐co‐ANSA)/LDPE blend was found to be in the range of 10?6–10?11 S/cm, showing its potential use as antistatic bag for the encapsulation of electronic equipments. The static decay time of the film was found to be of the order of 0.1–1.9 sec on recording the decay time from 5000 to 500 V. Static charge measurements carried out on the films show that no charge is present on the surface. The level of interaction between the copolymers and the matrix polymer was determined by the FTIR spectra, blend morphology, electrical conductivity, and thermal analysis. The effect of the morphology on electrical and antistatic behavior of copolymers has also been investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The solution properties of low‐charge‐density ampholytic terpolymers of acrylamide, sodium 3‐acrylamido‐3‐methylbutanoate, and (3‐acrylamidopropyl)trimethylammonium chloride were studied as functions of the solution pH, ionic strength, and polymer concentration. Terpolymers with low charge densities, large charge asymmetries, or both exhibited excellent solubility in deionized (DI) water, and higher charge density terpolymers were readily dispersible in DI water; however, the higher charge density terpolymer solutions separated into polymer‐rich and polymer‐poor phases upon standing over time. Charge‐balanced terpolymers exhibited antipolyelectrolyte behavior at pH values greater than or equal to the ambient pH (6.5 ± 0.2); the same terpolymers behaved increasingly as cationic polyelectrolytes with decreasing solution pH because of the protonation of the 3‐acrylamido‐3‐methylbutanoate (AMB) repeat units. Unbalanced terpolymers generally exhibited polyelectrolyte behavior, although the effects of intramolecular electrostatic attractions (i.e., polyampholyte effects) on the hydrodynamic volume of the unbalanced terpolymer coils were evident at certain values of the solution pH and salt concentration. The dilute‐solution behavior of the terpolymers correlated well with the behavior predicted by several polyampholyte solution theories. In the semidilute regime, solution viscosities increased with increasing terpolymer charge density, and this indicated a significant enhancement of the solution viscosity by intermolecular electrostatic associations. Upon the addition of NaCl, semidilute‐solution viscosities tended to decrease because of the disruption of the intermolecular electrostatic associations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3252–3270, 2004  相似文献   

19.
A simple approach for loading LiFePO4 (LFP) nanoparticles on graphene (G) that could assemble amorphous LiFePO4 nanoparticles into a stable, crystalline, graphene‐modified layered materials (G‐S‐LFP, S=sucrose) by using graphene as building block and sucrose as a linker has yet to be developed. On the basis of differential scanning calorimetric and transmission electron microscopy analysis of the samples from controlled experiment, a possible mechanism was proposed to explain the “linker” process of LFP and graphene with sucrose as the linker. The electrochemical properties of the samples as cathode material for lithium‐ion batteries were studied by cyclic voltammogrametry and galvanostatic methods. Results showed that G‐S‐LFP displayed superior lithium‐storage capability with current density changes randomly form 0.5 to 10 C. The significant improvement for rate and cycle performance could be attributed to the high conductivity of the graphene host, the high crystallinity, and the layered structure.  相似文献   

20.
A series of shape‐memory epoxy thermosets were synthesized by crosslinking diglycidyl ether of bisphenol A with mixtures of commercially available hyperbranched poly(ethyleneimine) and polyetheramine. Thermal, mechanical and shape‐memory properties were studied and the effect on them of the content and structure of the hyperbranched polymer was discussed. Measurements showed that the glass transition temperature can be tailored from 60 °C to 117 °C depending on the hyperbranched polymer content, and all formulations showed an appropriate glassy/rubbery storage modulus ratio. Shape‐memory programming was carried out at TgE′ given the excellent mechanical properties of the materials, with maximum stress and failure strain up to 15 MPa and 60%, respectively. The resulting shape‐memory behavior was excellent, with maximum shape recovery and shape fixity of 98% as well as a fast shape‐recovery rate of 22%/min. The results show that hyperbranched poly(ethyleneimine) as a crosslinking agent can be used to enhance mechanical and shape‐memory properties with different effects depending on the crosslinking density. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 924–933  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号