首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A series of new boron‐bridged [1]ferrocenophanes ([1]FCPs) was prepared by salt‐metathesis reactions between enantiomerically pure dilithioferrocenes and amino(dichloro)boranes (Et2NBCl2, iPr2NBCl2, or tBu(Me3Si)NBCl2). The dilithioferrocenes were prepared in situ by lithium–bromine exchange from the respective planar‐chiral dibromides (Sp,Sp)‐[1‐Br‐2‐(HR2C)H3C5]2Fe (R=Me or Et). In most of the cases, mixtures of the targeted [1]FCPs 4 and the unwanted 1,1′‐bis(boryl)ferrocenes 5 were formed. The product ratio depends on the bulkiness of the amino group, the speed of addition of the amino(dichloro)borane, the alkyl group on Cp rings, and in particular on the reaction temperature. The formation of strained [1]FCPs is strongly favored by increased reaction temperatures. Secondly, CHEt2 groups at Cp rings favored the formation of the targeted [1]FCPs stronger than CHMe2 groups. These discoveries open up new possibilities to further suppress the formation of unwanted byproducts by a careful choice of the reaction temperature and through tailoring the bulkiness of CHR2 groups on ferrocene. Thermal ring‐opening polymerizations of selected boron‐bridged [1]FCPs gave metallopolymers with a Mw of 10 kDa (GPC).  相似文献   

3.
The ring-opening reactions of a series of sila[1]ferrocenophanes with protic acids of anions with various degrees of noncoordinating character have been explored. Ferrocenyl-substituted silyl triflates FcSiMe2OTf (5 a) and Fc(3)SiOTf (5 b) (Fc=(eta5-C5H4)Fe(eta5-C5H5)) were synthesized by means of HOTf-induced ring-opening protonolysis of strained sila[1]ferrocenophanes fcSiMe2 (3 a) and fcSiFc2 (3 b) (fc=(eta5-C5H4)2Fe). Reaction of 3 a and 3 b with HBF4 yielded fluorosubstituted ferrocenylsilanes FcSiMe2F (6 a) and Fc3SiF (6 b) and suggested the intermediacy of a highly reactive silylium ion capable of abstracting F- from the [BF4]- ion. Generation of the solvated silylium ions [FcSiMe2THF]+ (7a+), [Fc3SiTHF]+ (7b+) and [FcSiiPr2OEt2]+ (7c+) at low temperatures, by reaction of the corresponding sila[1]ferrocenophanes (3 a, 3 b, and fcSiiPr2 (3 c), respectively) with H(OEt2)(S)TFPB (S=Et2O or THF; TFPB=tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) was monitored by using low-temperature 1H, 13C, and 29Si NMR spectroscopy. In situ reaction of 7a+, 7b+, and 7c+ with excess pyridine generated [FcSiMe2py]+ (8a+), [Fc3Sipy]+ (8b+), and [FcSiiPr2py]+ (8c+), respectively, as observed by 1H, 13C, and 29Si NMR spectroscopy. A preparative-scale reaction of 3 b with H(OEt2)(THF)TFPB at -60 degrees C and subsequent addition of excess pyridine gave isolable red crystals of 8b-[TFPB]CHCl3, which were characterized by 1H and 29Si NMR spectroscopy as well as by single-crystal X-ray diffraction.  相似文献   

4.
Phosphorus‐bridged strained [1]ferrocenophanes [Fe{(η‐C5H4)2P(CH2CMe3)}] ( 2 ) and [Fe{(η‐C5H4)2P(CH2SiMe3)}] ( 3 ) with neopentyl and (trimethylsilyl)methyl substituents on phosphorus, respectively, have been synthesized and characterized. Photocontrolled living anionic ring‐opening polymerization (ROP) of the known phosphorus‐bridged [1]ferrocenophane [Fe{(η‐C5H4)2P(CMe3)}] ( 1 ) and the new monomers 2 and 3 , initiated by Na[C5H5] in THF at 5 °C, yielded well‐defined polyferrocenylphosphines (PFPs), [Fe{(η‐C5H4)2PR}]n (R=CMe3 ( 4 ), CH2CMe3 ( 5 ), and CH2SiMe3 ( 6 )), with controlled molecular weights (up to ca. 60×103 Da) and narrow molecular weight distributions. The PFPs 4 – 6 were characterized by multinuclear NMR spectroscopy, DSC, and by GPC analysis of the corresponding poly(ferrocenylphosphine sulfides) obtained by sulfurization of the phosphorus(III) centers. The living nature of the photocontrolled anionic ROP allowed the synthesis of well‐defined all‐organometallic PFP‐b‐PFSF ( 7 a and 7 b ) (PFSF=polyferrocenylmethyl(3,3,3,‐trifluoropropyl)silane) diblock copolymers through sequential monomer addition. TEM studies of the thin films of the diblock copolymer 7 b showed microphase separation to form cylindrical PFSF domains in a PFP matrix.  相似文献   

5.
The ring‐opening polymerization (ROP) behavior of a variety of substituted 1,1′‐ethylenylferrocenes, or dicarba[2]ferrocenophanes, is reported. The electronic absorption spectra and tilted solid‐state structures of the monomers rac‐[Fe(η5‐C5H4)2(CHiPr)2] ( 7 ), [Fe(η5‐C5H4)2(C(H)MeCH2)] ( 8 ), and rac‐[Fe(η5‐C5H4)2(CHPh)2] ( 9 ) are consistent with the presence of substantial ring strain, which was exploited to synthesize soluble, well‐defined polyferrocenylethylenes (PFEs) [Fe(η5‐C5H4)2(C(H)MeCH2)]n ( 12 ) and [Fe(η5‐C5H4)2(CHPh)2]n ( 13 ) through photocontrolled ROP. Polymer chain lengths could be controlled by the monomer‐to‐initiator ratio up to about 50 repeat units and, consistent with the “living” nature of the polymerizations, sequential block copolymerization with a sila[1]ferrocenophane led to polyferrocenylethylene–polyferrocenylsilane (PFE‐b‐PFS) block copolymers ( 14 and 15 ). PFE polymers 12 and 13 showed two reversible oxidation waves, indicative of appreciable Fe???Fe interactions along the polymer backbone. The diblock copolymers were characterized by NMR spectroscopy, GPC analysis, and cyclic voltammetry.  相似文献   

6.
An improved protocol for the selective dilithiation of [V(η(5)-C(5)H(5))(η(7)-C(7)H(7))] has been developed, which afforded [V(η(5)-C(5)H(4)Li)(η(7)-C(7)H(6)Li)]·PMDTA (5; PMDTA=N,N,N',N',N'-pentamethyldiethylenetriamine) in almost quantitative yield (98%). In the solid state, the species features a dimeric structure with two terminal and two bridging lithium atoms, with the latter connecting both sandwich subunits. Reaction with suitable Group 4 dihalide compounds enabled the isolation of highly strained silicon- and germanium-bridged [1]trovacenophanes 6 and 7. Similarly, reaction of 5 with Cl(2)Sn(2)tBu(4) afforded the rather unstrained complex [V(η(5)-C(5)H(4))(η(7)-C(7)H(6))Sn(2)tBu(4)] (8), which together with 7 represent the first trovacenophanes to incorporate heavier analogues of silicon in the ansa-bridge. Ring-opening polymerization reactions of [V(η(5)-C(5)H(4))(η(7)-C(7)H(6))SiRR'] (2a: R=R'=Me; 6: R=Me, R'=iPr) were performed by heating in a solution of toluene in the presence of the Karstedt catalyst, which resulted in the formation of the corresponding soluble poly(trovacenylsilanes) in yields of 41 and 33%, respectively. As estimated by gel permeation chromatography (GPC), the macromolecules possess molecular weights of M(n)=10,010 and 5580 g mol(-1) with polydispersity indices of 2.31 and 1.64 for 9 and 10, respectively. ESR spectroscopic studies on 9 and 10 revealed only a single broad resonance in each case without any identifiable (51)V hyperfine coupling.  相似文献   

7.
8.
9.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

10.
Two sodium/potassium tetradentate aminobisphenolate ion‐paired complexes were synthesized and structurally characterized. These ion‐paired complexes are efficient catalysts for the ring‐opening polymerization of rac‐lactide (rac‐LA) in the presence of 5 equivalents BnOH as an initiator and the side reaction of epimerization can be suppressed well at low temperatures. The polymerizations are controllable, affording polylactides with desirable molecular weights and narrow molecular weight distributions; the highest molecular weight can reach 50.1 kg mol?1 in this system, and a best isoselectivity of Pm=0.82 was achieved. Such polymerizations have rarely been reported for isoselective sodium/potassium complexes without crown ether as an auxiliary ligand. The solid structures suggest that BnOH can be activated by an interaction with the anion of sodium/potassium complex via a hydrogen bond and that the monomer is activated by coordination to sodium/potassium ion.  相似文献   

11.
Reactivity studies of dicarba[2]ferrocenophanes and also their corresponding ring‐opened oligomers and polymers have been conducted in order to provide mechanistic insight into the processes that occur under the conditions of their thermal ring‐opening polymerisation (ROP) (300 °C). Thermolysis of dicarba[2]ferrocenophane rac‐[Fe(η5‐C5H4)2(CHPh)2] (rac‐ 14 ; 300 °C, 1 h) does not lead to thermal ROP. To investigate this system further, rac‐ 14 was heated in the presence of an excess of cyclopentadienyl anion, to mimic the postulated propagating sites for thermally polymerisable analogues. This afforded acyclic [(η5‐C5H5)Fe(η5‐C5H4)‐CH2Ph] ( 17 ) through cleavage of both a Fe?Cp bond and also the C?C bond derived from the dicarba bridge. Evidence supporting a potential homolytic C?C bond cleavage pathway that occurs in the absence of ring‐strain was provided through thermolysis of an acyclic analogue of rac‐ 14 , namely [(η5‐C5H5)Fe(η5‐C5H4)(CHPh)2‐C5H5] ( 15 ; 300 °C, 1 h), which also afforded ferrocene derivative 17 . This reactivity pathway appears general for post‐ROP species bearing phenyl substituents on adjacent carbons, and consequently was also observed during the thermolysis of linear polyferrocenylethylene [Fe(η5‐C5H4)2(CHPh)2]n ( 16 ; 300 °C, 1 h), which was prepared by photocontrolled ROP of rac‐ 14 at 5 °C. This afforded ferrocene derivative [Fe(η5‐C5H4CH2Ph)2] ( 23 ) through selective cleavage of the ?H(Ph)C?C(Ph)H? bonds in the dicarba linkers. These processes appear to be facilitated by the presence of bulky, radical‐stabilising phenyl substituents on each carbon of the linker, as demonstrated through the contrasting thermal properties of unsubstituted linear trimer [(η5‐C5H5)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H5)] ( 29 ) with a ?H2C?CH2? spacer, which proved significantly more stable under analogous conditions. Evidence for the radical intermediates formed through C?C bond cleavage was detected through high‐resolution mass spectrometric analysis of co‐thermolysis reactions involving rac‐ 14 and 15 (300 °C, 1 h), which indicated the presence of higher molecular weight species, postulated to be formed through cross‐coupling of these intermediates.  相似文献   

12.
13.
Alkaline earth (Ae) metal complexes of the aminophosphine borane ligand are highly active and iso‐selective catalysts for the ring‐opening polymerization (ROP) of rac‐lactide (LA). The polymerization reactions are well controlled and produce polylactides with molecular weights that are precise and narrowly distributed. Kinetic studies reveal that the ROP of rac‐LA catalyzed by all Ae metal complexes had a first‐order dependency on LA concentration as well as catalyst concentration. A plausible reaction mechanism for Ae metal complex‐mediated ROP of rac‐LA is discussed, based on controlled kinetic experiments and molecular chain mobility.  相似文献   

14.
Indium‐bridged [1]ferrocenophanes ([1]FCPs) and [1.1]ferrocenophanes ([1.1]FCPs) were synthesized from dilithioferrocene species and indium dichlorides. The reaction of Li2fc?tmeda (fc=(H4C5)2Fe) and (Mamx)InCl2 (Mamx=6‐(Me2NCH2)‐2,4‐tBu2C6H2) gave a mixture of the [1]FCP (Mamx)Infc ( 41 ), the [1.1]FCP [(Mamx)Infc]2 ( 42 ), and oligomers [(Mamx)Infc]n ( 4 n ). In a similar reaction, employing the enantiomerically pure, planar‐chiral (Sp,Sp)‐1,1′‐dibromo‐2,2′‐diisopropylferrocene ( 1 ) as a precursor for the dilithioferrocene derivative Li2fciPr2, equipped with two iPr groups in the α position, gave the inda[1]ferrocenophane 51 [(Mamx)InfciPr2] selectively. Species 51 underwent ring‐opening polymerization to give the polymer 5 n . The reaction between Li2fciPr2 and Ar′InCl2 (Ar′=2‐(Me2NCH2)C6H4) gave an inseparable mixture of the [1]FCP Ar′InfciPr2 ( 61 ) and the [1.1]FCP [Ar′InfciPr2]2 ( 62 ). Hydrogenolysis reactions (BP86/TZ2P) of the four inda[1]ferrocenophanes revealed that the structurally most distorted species ( 51 ) is also the most strained [1]FCP.  相似文献   

15.
The readily available cellulose‐derived bicyclic compound levoglucosenol was polymerized through ring‐opening metathesis polymerization (ROMP) to yield polylevoglucosenol as a novel type of biomass‐derived thermoplastic polyacetal, which, unlike polysaccharides, contains cyclic as well as linear segments in its main chain. High‐molar‐mass polyacetals with apparent weight‐average molar masses of up to 100 kg mol?1 and dispersities of approximately 2 were produced despite the non‐living/controlled character of the polymerization due to irreversible deactivation or termination of the catalyst/active chain ends. The resulting highly functionalized polyacetals are glassy in bulk with a glass transition temperature of around 100 °C. In analogy to polysaccharides, polylevoglucosenol degrades slowly in an acidic environment.  相似文献   

16.
17.
This communication describes photoresponsive gels, prepared using ring‐opening metathesis polymerization (ROMP), that dissolve upon irradiation with ultraviolet light. Exposure of mixtures of norbornene‐type ROMP monomers and new photoreactive cross‐linkers comprising two norbornene units bound through a chain containing o‐nitrobenzyl esters (NBEs) to well‐known ruthenium carbene catalysts gave cross‐linked polymer networks that swelled in organic solvents or water depending on the structure of the monomer. These gels became homogeneous upon irradiation with UV light, consistent with breaking of the cross‐links through photolysis of the NBE groups. The irradiation time required for homogenization of the gels depended on the cross‐link density and the structure of the photoresponsive cross‐linker.

  相似文献   


18.
Through the incorporation of stimuli‐responsive units, the properties of ring‐opening polymerization catalysts can be efficiently modulated using external stimuli. This article summarizes some of the recently reported strategies that control the ring‐opening polymerization of cyclic type monomers, using allosteric, redox, Lewis acid/base, supramolecular, electrochemical and light stimuli. These strategies enable the fine tuning of the polymerization process and the microstructure/composition of the final polymeric products.  相似文献   

19.
Fully conjugated block copolymers containing 1,4‐ and 1,3‐phenylenevinylene repeating units can be prepared by the sequential ring opening metathesis polymerization of strained cyclophanedienes, initiated by ruthenium carbene complexes (Grubbs metathesis catalysts). The molecular weight of the constituent blocks can be tightly controlled by changing the catalyst to monomer ratio and the volume fraction of the block copolymers independently tailored by the ratio of the monomers employed. Extensive phase separation between the constituent blocks is observed in thin films of these polymers by atomic force microscopy and efficient energy transfer between blocks containing 1,4‐ and 1,3‐phenylenevinylene units can be seen in the photoluminescence of these materials.

  相似文献   


20.
The photochemical reactions of the moderately strained sila[1]ferrocenophane [Fe(eta-C(5)H(4))(2)SiPh(2)] (1) and the highly strained thia[1]ferrocenophane [Fe(eta-C(5)H(4))(2)S] (8) with transition-metal carbonyls ([Fe(CO)(5)], [Fe(2)(CO)(9)] and [Co(2)(CO)(8)]) have been studied. The use of metal carbonyls has allowed the products of photochemically induced Fe-cyclopentadienyl (Cp) bond cleavage reactions in the [1]ferrocenophanes to be trapped as stable, characterisable products. During the course of these studies the synthesis of 8 from [Fe(eta-C(5)H(4)Li)(2)TMEDA] (TMEDA=N,N,N',N'-tetramethylethylenediamine) and S(SO(2)Ph)(2) has been significantly improved by a change of reaction solvent and temperature. Photochemical reaction of 1 with excess [Fe(CO)(5)] in THF gave the dinuclear complex [Fe(2)(CO)(2)(mu-CO)(2)(eta-C(5)H(4))(2)SiPh(2)] (9). The analogous photolytic reaction of 8 with [Fe(CO)(5)] in THF gave cyclic dimer [Fe(eta-C(5)H(4))(2)S](2) (10) and [Fe(2)(CO)(2)(mu-CO)(2)(eta-C(5)H(4))(2)S] (11), with the former being the major product. Photolysis of 1 with [Co(2)(CO)(8)] afforded the remarkable tetrametallic dimer [(CO)(2)Co(eta-C(5)H(4))SiPh(2)(eta-C(5)H(4))Fe(CO)(2)](2) (13). The corresponding photochemical reaction of 8 with [Co(2)(CO)(8)] gave a trimetallic insertion product in high conversion, [Co(CO)(4)(CO)(2)Fe(eta-C(5)H(4))S(eta-C(5)H(4))Co(CO)(2)] (14). These reactivity studies show that UV light promotes Fe-Cp bond cleavage reactions of both of the [1]ferrocenophanes 1 and 8. We have found that, whereas the less strained sila[1]ferrocenophane 1 requires photoactivation for Fe-Cp bond insertions to occur, the highly strained thia[1]ferrocenophane 8 undergoes both irradiative and non-irradiative insertions, although the latter occur at a slower rate. Our results suggest that such photoinduced bond cleavage reactions may be general and applicable to other related strained organometallic rings with pi-hydrocarbon ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号