首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pradimicins (PRMs) and benanomicins are the only family of non‐peptidic natural products with lectin‐like properties, that is, they recognize D ‐mannopyranoside (Man) in the presence of Ca2+ ions. Coupled with their unique Man binding ability, they exhibit antifungal and anti‐HIV activities through binding to Man‐containing glycans of pathogens. Notwithstanding the great potential of PRMs as the lectin mimics and therapeutic leads, their molecular basis of Man recognition has yet to be established. Their aggregate‐forming propensity has impeded conventional interaction analysis in solution, and the analytical difficulty is exacerbated by the existence of two Man binding sites in PRMs. In this work, we investigated the geometry of the primary Man binding of PRM‐A, an original member of PRMs, by the recently developed analytical strategy using the solid aggregate composed of the 1:1 complex of PRM‐A and Man. Evaluation of intermolecular distances by solid‐state NMR spectroscopy revealed that the C2–C4 region of Man is in close contact with the primary binding site of PRM‐A, while the C1 and C6 positions of Man are relatively distant. The binding geometry was further validated by co‐precipitation experiments using deoxy‐Man derivatives, leading to the proposal that PRM‐A binds not only to terminal Man residues at the non‐reducing end of glycans, but also to internal 6‐substituted Man residues. The present study provides new insights into the molecular basis of Man recognition and glycan specificity of PRM‐A.  相似文献   

2.
Surface‐enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single‐molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble‐metal‐free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble‐metal‐free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene‐based nanostructures. Rather than providing an exhaustive review of this field, possible contributions from semiconductor substrates, characteristics of graphene enhanced Raman scattering, as well as effect factors such as surface plasmon resonance, structure and defects of the nanostructures that are considered essential for SERS activity are emphasized. The intention is to illustrate, through these examples, that the promise of noble‐metal‐free materials for enhancing detection sensitivity can further fuel the development of SERS‐related applications.  相似文献   

3.
Asparagine‐linked (N‐linked) sugar chains are widely found in the rough endoplasmic reticulum (ER), which has attracted renewed attention because of its participation in the glycoprotein quality control process. In the ER, newly formed glycoproteins are properly folded to higher‐order structures by the action of a variety of lectin chaperones and processing enzymes and are transported into the Golgi, while terminally misfolded glycoproteins are carried into the cytosol for degradation. A group of proteins related to this system are known to recognize subtle differences in the high‐mannose‐type oligosaccharide structures of glycoproteins; however, their molecular foundations are still unclear. In order to gain a more precise understanding, our group has established a strategy for the systematic synthesis of high‐mannose‐type glycans. More recently, we have developed “top‐down” chemoenzymatic approaches that allow expeditious access to theoretically all types of high‐mannose glycans. This strategy comprehensively delivered 37 high‐mannose‐type glycans, including G1M9–M3 glycans, and opened up the possibility of the elucidation of structure–function relationships with a series of high‐mannose‐type glycans.  相似文献   

4.
We present a detailed analysis of the surface‐enhanced Raman scattering (SERS) of adenine and 2′‐deoxyadenosine 5′‐monophosphate (dAMP) adsorbed on an Ag20 cluster by using density functional theory. Calculated Raman spectra show that spectral features of all complexes depend greatly on adsorption sites of adenine and dAMP. The complexes consisting of adenine adsorbed on the Ag20 cluster through N3 reproduce the measured SERS spectra in silver colloids, and thus demonstrated that adenine interacts with the silver surface via N3. We also investigate the SERS spectrum of adenine at the junction between two Ag20 clusters and demonstrate that adenine can bind to the clusters through N3 and the external amino group, while dAMP can be adsorbed on the cluster in an end‐on orientation with the ribose and phosphate groups near to or away from the silver cluster. In contrast to the adenine–Ag20 complexes, the dAMP–Ag20 complexes produce new and strong bands in the low‐ or high‐wavenumber region of the Raman spectra, due to vibrations of the ribose and phosphate groups. Furthermore, the spectrum of dAMP bound to the Ag20 cluster via N7 approaches the experimental SERS spectra on silver colloids.  相似文献   

5.
The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper‐CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper‐CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live‐cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell‐surface glycans at nanomolar concentrations.  相似文献   

6.
The intrinsically disordered protein (IDP), α‐synuclein (αS), is well‐known for phospholipid membrane binding‐coupled folding into tunable helical conformers. Here, using single‐molecule experiments in conjunction with ensemble assays and a theoretical model, we present a unique case demonstrating that the interaction–folding landscape of αS can be tuned by two‐dimensional (2D) crowding through simultaneous binding of a second protein on the bilayer surface. Unexpectedly, the experimental data show a clear deviation from a simple competitive inhibition model, but are consistent with a bimodal inhibition mechanism wherein membrane binding of a second protein (a membrane interacting chaperone, Hsp27, in this case) differentially inhibits two distinct modules of αS–membrane interaction. As a consequence, αS molecules are forced to access a hidden conformational state on the phospholipid bilayer in which only the higher‐affinity module remains membrane‐bound. Our results demonstrate that macromolecular crowding in two dimensions can play a significant role in shaping the conformational landscape of membrane‐binding IDPs with multiple binding modes.  相似文献   

7.
A disialylated tetrasaccharide, Neu5Ac(α2,3)Gal(β1,3)[Neu5Ac(α2,6)]GlcNAc ( 1 ), which is found at the termini of some N‐glycans, has been synthesized. Compound 1 was obtained through an α‐sialylation reaction between a sialic acid donor and a trisaccharide that was synthesized from the glycosylation of a sialylated disaccharide with a glucosaminyl donor. This synthetic route enabled the synthesis of the as‐described disialylated structure. A more‐convergent route based on the glycosylation of two sialylated disaccharides was also established to scale up the synthesis. Protection of the amide groups in the sialic acid residues significantly increased the yield of the glycosylation reaction between the two sialylated disaccharides, thus suggesting that the presence of hydrogen bonds on the sialic acid residues diminished their reactivity.  相似文献   

8.
Glycosphingolipid (GSL) is a major component of the plasma membrane in eukaryotic cells that is involved directly in a variety of immunological events via cell‐to‐cell or cell‐to‐protein interactions. In this study, qualitative and quantitative analyses of GSL‐derived glycans on endothelial cells and islets from a miniature pig were performed and their glycosylation patterns were compared. A total of 60 and 47 sialylated and neutral GSL‐derived glycans from the endothelial cells and islets, respectively, were characterized by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and collision‐induced fragmentation using positive‐ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). In accordance with previous immunohistochemistry studies, the α‐Gal‐terminated GSL was not detected but NeuGc‐terminated GSLs were newly detected from miniature pig islets. In addition, the neutral GSL‐derived glycans were relatively quantified by derivatization with carboxymethyl trimethylammonium hydrazide (so called Girard's T reagent) and MALDI‐TOF MS. The structural information of the GSL‐derived glycans from pig endothelial cells and islets suggests that special attention should be paid to all types of glycoconjugates expressed on pig tissues or cells for successful clinical xenotransplantation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Surface enhanced Raman spectroscopy (SERS) is a powerful optical sensing technique that can detect analytes of extremely low concentrations. However, the presence of enough SERS probes in the detection area and a close contact between analytes and SERS probes are critical for efficient acquisition of a SERS signal. Presented here is a light‐powered micro/nanomotor (MNM) that can serve as an active SERS probe. The matchlike AgNW@SiO2 core–shell structure of the nanomotors work as SERS probes based on the shell‐isolated enhanced Raman mechanism. The AgCl tail serves as photocatalytic nanoengine, providing a self‐propulsion force by light‐induced self‐diffusiophoresis. The phototactic behavior was utilized to achieve enrichment of the nanomotor‐based SERS probes for on‐demand biochemical sensing. The results demonstrate the possibility of using photocatalytic nanomotors as active SERS probes for remote, light‐controlled, and smart biochemical sensing on the micro/nanoscale.  相似文献   

10.
O Mannosylation is a vital protein modification involved in brain and muscle development whereas the biological relevance of O‐mannosyl glycans has remained largely unknown owing to the lack of structurally defined glycoforms. An efficient scaffold synthesis/enzymatic extension (SSEE) strategy was developed to prepare such structures by combining gram‐scale convergent chemical syntheses of three scaffolds and strictly controlled sequential enzymatic extension catalyzed by glycosyltransferases. In total, 45 O‐mannosyl glycans were obtained, covering the majority of identified mammalian structures. Subsequent glycan microarray analysis revealed fine specificities of glycan‐binding proteins and specific antisera.  相似文献   

11.
Column electrodes pretreated through oxidation–reduction cycles were traditionally used in electrochemical surface‐enhanced Raman scattering (SERS). In this study, a disposable screen‐printed carbon electrode was introduced into in situ electrochemical SERS through the electrodeposition of dendritic gold/silver nanoparticles (Au/AgNPs) onto the surface of the carbon working electrode to induce the SERS enhancement effect on the electrode. Scanning electron microscopy images showed that dendritic Au/AgNPs nanostructures could be fabricated under appropriate electrodeposition conditions and could present a minimum SERS factor of 4.25 × 105. Furthermore, the absorbed behavior of 4‐mercaptopyridine was investigated under different potentials. The adsorption configuration was inferred to transform from ‘vertical’ to ‘lying‐flat’. The proposed new electrode combined with a portable Raman spectrometer could be useful in the identifying products or intermediates during electrochemical synthesis or electrochemical catalysis in in situ electrochemical SERS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A simple bifunctional surface‐enhanced Raman scattering (SERS) assay based on primer self‐generation strand‐displacement polymerization (PS‐SDP) is developed to detect small molecules or proteins in parallel. Triphosphate (ATP) and lysozyme are used as the models of small molecules and proteins. Compared to traditional bifunctional methods, the method possesses some remarkable features as follows: 1) by virtue of the simple PS‐SDP reaction, a bifunctional aptamer assembly binding of trigger 1 and trigger 2 was used as a functional structure for the simultaneous sensing of ATP or lysozyme. 2) The concept of isothermal amplification bifunctional detection has been first introduced into SERS biosensing applications as a signal‐amplification tool. 3) The problem of high background induced by excess bio‐barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal‐output products and massive of hairpin DNA binding with SERS active bio‐barcodes relied on Au nanoparticles (Au NPs), SERS signal is significantly enhanced. Overall, with multiple amplification steps and one magnetic‐separation procedure, this flexible biosensing system exhibited not only high sensitivity and specificity, with the detection limits of ATP and lysozyme of 0.05 nM and 10 fM , respectively.  相似文献   

13.
The interaction of cytochrome c (Cyt c) with cardiolipin (CL) is believed to play an important role in the initial events of apoptosis. Herein, we investigate the structural changes of CL‐bound Fe2+Cyt c and the correlation with Cyt c release through surface‐enhanced Raman spectroscopy (SERS) on nickel substrates. The SERS results together with molecular dynamics simulation reveal that Fe2+Cyt c undergoes autoxidation and a relatively larger conformational alteration after binding with CL, inducing higher peroxidase activity of Cyt c and higher permeability of the CL membrane compared with those induced by the Fe3+Cyt c. The proapoptotic activity and SERS effect of the Ni nanostructures allow the in situ study of the redox‐state‐dependent Cyt c release from isolated mitochondria, which reveals for the first time that the ferrous state of Cyt c most likely plays a more important role in triggering apoptosis.  相似文献   

14.
Serum levels of fully sialylated C4‐binding protein (FS‐C4BP) are remarkably elevated in patients with epithelial ovarian cancer (EOC) and can be used as a marker to distinguish ovarian clear cell carcinoma from endometrioma. This study aimed to develop a stable, robust and reliable liquid chromatography–hybrid mass spectrometry (UPLC‐MS/MS) based diagnostic method that would generalize FS‐C4BP as a clinical EOC biomarker. Glycopeptides derived from 20 μL of trypsin‐digested serum glycoprotein were analyzed via UPLC equipped with an electrospray ionization time‐of‐flight mass spectrometer. This UPLC‐MS/MS‐based diagnostic method was optimized for FS‐C4BP and validated using sera from 119 patients with EOC and 127 women without cancer. A1958 (C4BP peptide with two fully sialylated biantennary glycans) was selected as a marker of FS‐C4BP because its level in serum was highest among FS‐C4BP family members. Preparation and UPLC‐MS/MS were optimized for A1958, and performance and robustness were significantly improved relative to our previous method. An area under the curve analysis of the FS‐C4BP index receiver operating characteristic curve revealed that the ratio between A1958 and A1813 (C4BP peptide with two partially sialylated biantennary glycans) reached 85%. A combination of the FS‐C4BP index and carbohydrate antigen‐125 levels further enhanced the sensitivity and specificity.  相似文献   

15.
Metabolomics is a powerful systems biology approach that monitors changes in biomolecule concentrations to diagnose and monitor health and disease. However, leading metabolomics technologies, such as NMR and mass spectrometry (MS), access only a small portion of the metabolome. Now an approach is presented that uses the high sensitivity and chemical specificity of surface‐enhanced Raman scattering (SERS) for online detection of metabolites from tumor lysates following liquid chromatography (LC). The results demonstrate that this LC‐SERS approach has metabolite detection capabilities comparable to the state‐of‐art LC‐MS but suggest a selectivity for the detection of a different subset of metabolites. Analysis of replicate LC‐SERS experiments exhibit reproducible metabolite patterns that can be converted into barcodes, which can differentiate different tumor models. Our work demonstrates the potential of LC‐SERS technology for metabolomics‐based diagnosis and treatment of cancer.  相似文献   

16.
Coarse‐grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein–ligand binding processes. We chose two protein–ligand systems, the levansucrase–sugar (glucose or sucrose), and LinB–1,2‐dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand‐binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse‐grained (CG) ligand molecules revealed potential ligand‐binding sites on the protein surfaces other than the real ligand‐binding sites. The ligands bound most strongly to the real ligand‐binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase–sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand‐binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein–ligand binding processes. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
The direct transfer of single‐crystalline Au nanowires (NWs) onto Au substrates was achieved by a simple attachment and detachment process. In the presence of a lubricant, Au NWs grown vertically on a sapphire substrate were efficiently moved to an Au substrate through van der Waals interactions. We demonstrate that the transferred Au NWs on the Au substrate can act as sensitive, reproducible, and long‐term‐stable surface‐enhanced Raman scattering (SERS) sensors by detecting human α‐thrombin as well as Pb2+ and Hg2+ ions. These three biochemically and/or environmentally important analytes were successfully detected with high sensitivity and selectivity by Au NW‐SERS sensors bound by a thrombin‐binding aptamer. Furthermore, the as‐prepared sensors remained in working order after being stored under ambient conditions at room temperature for 80 days. Because Au NWs can be routinely transferred onto Au substrates and because the resultant Au NW‐SERS sensors are highly stable and provide with high sensitivity and reproducibility of detection, these sensors hold potential for practical use in biochemical sensing.  相似文献   

18.
Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug‐resistant bacteria (MDRB), by using current market‐existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn‐shaped iron magnetic core–gold plasmonic shell nanotechnology‐driven approach for targeted magnetic separation and enrichment, label‐free surface‐enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the “lightning‐rod effect”, the core–shell popcorn‐shaped gold‐nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody‐conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal‐lysis experiment, by using 670 nm light at 1.5 W cm?2 for 10 min, results in selective and irreparable cellular‐damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label‐free SERS imaging, and photothermal destruction of MDRB by using the popcorn‐shaped magnetic/plasmonic nanotechnology.  相似文献   

19.
Surface‐enhanced Raman spectroscopy (SERS) is an emerging technology in the field of analytics. Due to the high sensitivity in connection with specific Raman molecular fingerprint information SERS can be used in a variety of analytical, bioanalytical, and biosensing applications. However, for the SERS effect substrates with metal nanostructures are needed. The broad application of this technology is greatly hampered by the lack of reliable and reproducible substrates. Usually the activity of a given substrate has to be determined by time‐consuming experiments such as calibration or ultramicroscopic studies. To use SERS as a standard analytical tool, cheap and reproducible substrates are required, preferably with a characterization technique that does not interfere with the subsequent measurements. Herein we introduce an innovative approach to produce low‐cost and large‐scale reproducible substrates for SERS applications, which allows easy and economical production of micropatterned SERS active surfaces on a large scale. This approach is based on an enzyme‐induced growth of silver nanostructures. The special structural feature of the enzymatically deposited silver nanoparticles prevents the breakdown of SERS activity even at high particle densities (particle density >60 %) that lead to a conductive layer. In contrast to other approaches, this substrate exhibits a relationship between electrical conductivity and the resulting SERS activity of a given spot. This enables the prediction of the SERS activity of the nanostructure ensemble and therewith the controllable and reproducible production of SERS substrates of enzymatic silver nanoparticles on a large scale, utilizing a simple measurement of the electrical conductivity. Furthermore, through a correlation between the conductivity and the SERS activity of the substrates it is possible to quantify SERS measurements with these substrates.  相似文献   

20.
The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N‐glycans with α1,6‐linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N‐glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed β‐prism III. Three biantennary core‐fucosylated N‐glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6‐fucosylated N‐glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N‐glycan flexibility upon binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号