首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A catalytic enantioselective method for the synthesis of 1,4‐keto‐alkenylboronate esters by a rhodium‐catalyzed conjugate addition pathway is disclosed. A variety of novel, bench‐stable alkenyl gem‐diboronate esters are synthesized. These easily accessible reagents react smoothly with a collection of cyclic α,β‐unsaturated ketones, generating a new C?C bond and stereocenter. Products are isolated in up to 99 % yield with greater than 20:1 E/Z and greater than 99:1 e.r. Mechanistic studies show the site‐selectivity of transmetalation and reactivity is ligand dependent. The utility of the approach is highlighted by gram‐scale synthesis of enantioenriched cyclic 1,4‐diketones, and stereoselective transformations of the products by hydrogenation, allylation, and isomerization.  相似文献   

2.
In the present work, quantum chemical computations of the enantioselective reduction of keto oxime ether with borane catalyzed by chiral oxazaborolidine are performed by means of the Hartree–Fock and the density functional methods. The structures of oxazaborolidine, oxazaborolidine–borane adduct, and oxazaborolidine–borane–keto oxime ether adducts are optimized completely at the HF/6‐31g* and B3LYP/6‐31g* levels and their properties studied in detail. The oxazaborolidine catalyst is a twisted chair structure and reacts with borane at the nitrogen site of the catalyst to form the catalyst–borane adduct whose formation reaction is exothermic. The catalyst–borane adduct reacts easily with keto oxime ether to form catalyst–borane–keto oxime ether adducts that have eight stable structures. The coordination of the carbonyl oxygen in keto oxime ether at the boron site of the catalyst is of more advantage to the enantioselective reduction of keto oxime ether than the coordination of the oxime nitrogen in the keto oxime ether at the boron site is. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 291–304, 2001  相似文献   

3.
The reaction of O(3P) with 1‐butene (CH3CH2CH?CH2) are examined by applying the UMP2 and G3 methods. The minimum energy crossing points (MECPs) between the singlet and triplet potential energy surfaces are located using the Newton‐Lagrange method, and it is shown that the MECPs play a key role in the reaction mechanisms. The complex reaction mechanisms are revealed for both adiabatic and nonadiabatic reaction channels, and the observations in several recent experiments can be rationalized based upon the present calculations. The calculational results indicate that the site selectivity of the addition of O(3P) to either carbon atom of the double bond of 1‐butene is not remarkable. In addition, the formation mechanisms of butenols are discussed. The butenols can be created not only by the keto‐enol tautomerization, but also by the rearrangement and decomposition reaction involving the epoxy compound. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Dynamic kinetic asymmetric transformations (DyKAT) of racemic β‐bromo‐α‐keto esters by direct aldolization of nitromethane and acetone provide access to fully substituted α‐glycolic acid derivatives bearing a β‐stereocenter. The aldol adducts are obtained in excellent yield with high relative and absolute stereocontrol under mild reaction conditions. Mechanistic studies determined that the reactions proceed through a facile catalyst‐mediated racemization of the β‐bromo‐α‐keto esters under a DyKAT Type I manifold.  相似文献   

5.
Cyclohexanone monooxygenases (CHMOs) show very high catalytic specificity for natural Baeyer–Villiger (BV) reactions and promiscuous reduction reactions have not been reported to date. Wild‐type CHMO from Acinetobacter sp. NCIMB 9871 was found to possess an innate, promiscuous ability to reduce an aromatic α‐keto ester, but with poor yield and stereoselectivity. Structure‐guided, site‐directed mutagenesis drastically improved the catalytic carbonyl‐reduction activity (yield up to 99 %) and stereoselectivity (ee up to 99 %), thereby converting this CHMO into a ketoreductase, which can reduce a range of differently substituted aromatic α‐keto esters. The improved, promiscuous reduction activity of the mutant enzyme in comparison to the wild‐type enzyme results from a decrease in the distance between the carbonyl moiety of the substrate and the hydrogen atom on N5 of the reduced flavin adenine dinucleotide (FAD) cofactor, as confirmed using docking and molecular dynamics simulations.  相似文献   

6.
AgOTf proved to be an effective catalyst for the transesterification of β‐keto esters with primary, secondary and tertiary alcohols. The products were obtained in high yield within a reasonable reaction time period. The kinetics of the transesterification reaction were also studied and the reaction was found to follow second‐order kinetics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Novel method for the synthesis of 3‐acyl‐1,6‐dialkyl‐7‐methyl‐1,6‐naphthyridine‐2,5(1H,6H)‐diones (2) was developed. The reaction of 2‐acyl‐1‐alkylamino‐1‐ethoxyethylenes (1) with acetyl chloride or β‐keto amide 3 with acetyl chloride in the presence of p‐toluenesulfonic acid gave 2 in moderate yield (14‐59% yield).  相似文献   

8.
A chiral manganese porphyrin complex with a two‐point hydrogen‐bonding site was prepared and probed in catalytic C?H oxygenation reactions of 3,4‐dihydroquinolones. The desired oxygenation occurred with perfect site selectivity at the C4 methylene group and with high enantioselectivity in favor of the respective 4S‐configured secondary alcohols (12 examples, 29–97 % conversion, 19–68 % yield, 87–99 % ee). Mechanistic studies support the hypothesis that the reaction proceeds through a rate‐ and selectivity‐determining attack of the reactive manganese oxo complex at the hydrogen‐bound substrate and an oxygen transfer by a rebound mechanism.  相似文献   

9.
β‐Polyfluoroalkyl β‐keto sulfones, sulfamides, and phosphonates react under mild conditions with dimethyl acetylenedicarboxylate and triphenyl phosphine to yield via the intramolecular Wittig reaction, correspondingly, 4‐sulfonyl‐ (4‐sul‐famoyl‐) (4‐phosphonyl‐) 3‐(polyfluoroalkyl)cyclobut‐2‐ene‐1,2‐dicarboxylates.  相似文献   

10.
Phytochromes are ubiquitous photoreceptors found in plants, eukaryotic algae, bacteria and fungi. Particularly, when bacteriophytochrome is irradiated with light, a Z‐to‐E (photo)isomerization takes place in the biliverdin chromophore as part of the Pr‐to‐Pfr conversion. This photoisomerization is concomitant with a bathochromic shift in the Q‐band. Based on experimental evidence, we studied a possible keto–enol tautomerization of BV, as an alternative reaction channel after its photoisomerization. In this contribution, the noncatalyzed and water‐assisted reaction pathways for the lactam–lactim interconversion through consecutive keto–enol tautomerization of a model BV species were studied deeply. It was found that in the absence of water molecules, the proton transfer reaction is unable to take place at normal conditions, due to large activation energies, and the endothermic formation of lactim derivatives prevents its occurrence. However, when a water molecule assists the process by catalyzing the proton transfer reaction, the activation free energy lowers considerably. The drastic lowering in the activation energy for the keto–enol tautomerism is due to the stabilization of the water moiety through hydrogen bonds along the reaction coordinate. The absorption spectra were computed for all tautomers. It was found that the UV–visible absorption bands are in reasonable agreement with the experimental data. Our results suggest that although the keto–enol equilibrium is likely favoring the lactam tautomer, the equilibrium could eventually be shifted in favor of the lactim, as it has been reported to occur in the dark reversion mechanism of bathy phytochromes.  相似文献   

11.
The dynamic covalent‐coupling reaction involving α‐effect nucleophiles has revolutionized bioconjugation approaches, due to its ease and high efficiency. Key to its success is the discovery of aniline as a nucleophilic catalyst, which made this reaction feasible under physiological conditions. Aniline however, is not so effective for keto substrates. Here, we investigate the mechanism of aniline activation in the oxime reaction with aldehyde and keto substrates. We also present carboxylates as activating agents that can promote the oxime reaction with both aldehyde and keto substrates at physiological pH. This rate enhancement circumvents the influence of α‐effect by forming H‐bonds with the rate‐limiting intermediate, which drives the reaction to completion. The combination of aniline and carboxylates had a synergistic effect, resulting in a ~14–31‐fold increase in reaction rate at pD 7.4 with keto substrates. The biocompatibility and efficiency of carboxylate as an activating agent is demonstrated by performing cell‐surface oxime labeling at physiological pH using acetate, which showed promising results that were comparable with aniline.  相似文献   

12.
Carbophilic gold carbenes generated from the decomposition of α‐diazoesters show high reactivity towards enamides, leading to an unprecedented aza‐ene‐type reaction. The presence of 0.1 mol % of a chiral Brønsted acid co‐catalyst is sufficient to give synthetically relevant γ‐keto esters in excellent yields and selectivities (up to 99 % yield, 97 % ee ).  相似文献   

13.
The absorption and emission spectra of a series of oxyluciferin derivatives with different substituents, as well as 6′‐amino oxyluciferins in different enol and keto forms, with or without an active‐site model of luciferase, were systematically investigated using density functional theory. The effects of substituents, microenvironment, and the luciferase on the structures, absorption spectra, and fluorescent emission were all taken into account. It was found that a wide range of emission colors can be obtained from various oxyluciferin derivatives with the inclusion of active site residues modeling the luciferase active site. Enol and keto forms are responsible for the emissions observed in experiments. It was suggested that the active site of luciferase must be included in the calculation in order to determine the form of the emitters.  相似文献   

14.
刘建明a  b  郑书展a  b  孙伟a  夏春谷a 《中国化学》2009,27(4):623-627
碘代芳烃与二乙胺在Pd/C催化作用下成功的合成了α-酮酰胺,可以得到非常不错的收率和选择性。在最佳反应条件下,对于不同的碘代芳烃和二级胺都很有很好的底物适应性。  相似文献   

15.
Thienoguanosine (thG) is an isomorphic nucleoside analogue acting as a faithful fluorescent substitute of G, with respectable quantum yield in oligonucleotides. Photophysical analysis of thG reveals the existence of two ground‐state tautomers with significantly shifted absorption and emission wavelengths, and high quantum yield in buffer. Using (TD)‐DFT calculations, the tautomers were identified as the H1 and H3 keto‐amino tautomers. When incorporated into the loop of (?)PBS, the (?)DNA copy of the HIV‐1 primer binding site, both tautomers are observed and show differential sensitivity to protein binding. The red‐shifted H1 tautomer is strongly favored in matched (?)/(+)PBS duplexes, while the relative emission of the H3 tautomer can be used to detect single nucleotide polymorphisms. These tautomers and their distinct environmental sensitivity provide unprecedented information channels for analyzing G residues in oligonucleotides and their complexes.  相似文献   

16.
A solvent‐free synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones from aromatic aldehydes, β‐keto ester/acetyl acetone and urea catalysed by cupric acetate under thermal condition is reported as a simple and an efficient protocol. Compared with classical Biginelli reaction reported in 1893, this new method provides much improved modification in terms of yield and reaction time. The usage of milder catalyst, environmental friendly procedures and excellent yields within a very short time (5–15 min) are the advantages of the method in which the involvement of solvent‐free condition adds an edge to the method. Thus, the efficiency of the protocol enabled the rapid synthesis of 3,4dihydropyrimidin‐2(1H)‐one derivatives in a short duration.  相似文献   

17.
Highly enantioselective cross‐aldol reactions between acetaldehyde and activated acyclic ketones are reported for the first time. Various acyclic ketones, such as saturated and unsaturated keto esters, reacted with acetaldehyde in the presence of a chiral primary amine and a Brønsted acid to afford optically enriched tertiary alcohols in good yields and with excellent enantioselectivities. Trifluoromethyl ketones were tolerable under the reaction conditions, thereby affording the trifluoromethyl carbinol in good‐to‐excellent yields and enantioselectivities. Structural modification of the chiral amines from the same chiral source switched the stereoselectivity of the products. The utility of aldol chemistry was demonstrated in the brief synthesis of functionally enriched δ‐lactones. Theoretical calculations on the transition‐state structure indicated that the protonated tertiary amine could effectively activate the carbonyl group of a keto ester to promote the addition process through hydrogen‐bonding interaction and, simultaneously, provide an appropriate attacking pattern for the approach of the keto ester to the enamine, which is formed from acetaldehyde and the chiral catalyst, on a particular face, resulting in high enantioselectivity.  相似文献   

18.
A diastereoselective synthesis of cis‐5‐oxodecahydroquinolines is described in which three stereocenters are generated in a one‐pot reaction. The reaction involves a lithium hydroxide‐promoted Robinson annulation/intramolecular aza‐Michael domino process from an achiral acyclic tosylamine‐tethered β‐keto ester. The development and scope of this reaction was facilitated through the use of DFT‐based mechanistic studies, which enabled the observed diastereodivergent course of the azacyclization to be rationalized. The varying stereochemistry and stability of the resulting decahydroquinolines was found to depend on whether a β‐keto ester or ketone were embedded in the substrates undergoing aminocyclization. This synthetic approach gave access not only to both diastereomeric cis‐decahydroquinolines from the same precursor, but also to the corresponding trans isomers, through an epimerization processes of the corresponding N‐unsubstituted cis‐5‐oxodecahydroquinolines. The described methodology provides advanced building‐blocks with the three relative stereochemistries required for the total synthesis of phlegmarine alkaloids.  相似文献   

19.
Ground state geometries of the four tautomeric forms keto‐N9H, keto‐N7H, enol‐N9H, and enol‐N7H of guanine were optimized in the gas phase at the RHF level using a mixed basis set consisting of the 4‐31G basis set for all the atoms except the nitrogen atom of the amino group for which the 6‐311+G* basis set was used. These calculations were also extended to hydrogen‐bonded complexes of three water molecules with each of the keto‐N9H (G9‐3W) and keto‐N7H (G7‐3W) forms of guanine. Relative stabilities of the four above‐mentioned tautomers of guanine as well as those of G9‐3W and G7‐3W complexes in the ground state in the gas phase were studied employing the MP2 correlation correction. In aqueous solution, relative stabilities of these systems were studied using the MP2 correlation correction and polarized continuum model (PCM) or the isodensity surface polarized continuum model (IPCM) of the self‐consistent reaction field (SCRF) theory. Geometry optimization in the gas phase at the RHF level using the 6‐31+G* basis set for all atoms and the solvation calculations in water at the MP2 level using the same basis set were also carried out for the nonplanar keto‐N9H and keto‐N7H forms of guanine. Thus, it is shown that among the different tautomers of guanine, the keto‐N7H form is most stable in the gas phase, while the keto‐N9H form is most stable in aqueous solution. It appears that both the keto‐N9H and keto‐N7H forms of guanine would be present in the ground state, particularly near the aqueous solution–air interface. Vertical excitation and excited state geometry optimization calculations were performed using configuration interaction involving single electron excitation (CIS). It is found that the absorption spectrum of guanine would arise mainly due to its keto‐N9H form but the keto‐N7H form of the same would also make some contribution to it. The enol‐N9H and enol‐N7H forms of the molecule are not expected to occur in appreciable abundance in the gas phase or aqueous media. The normal fluorescence spectrum of guanine in aqueous solution with a peak near 332 nm seems to originate from the lowest singlet excited state of the keto‐N7H form of the molecule while the fluorescence of oxygen‐rich aqueous solutions of guanine with a peak near 450 nm appears to originate from the lowest singlet excited state of the keto‐N9H form of the molecule. The origin of the slow damped spectral oscillation observed in the absorption spectrum of guanine has been explained. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 826–846, 2000  相似文献   

20.
The first enantioselective direct cross‐aldol reaction of α‐keto amides with aldehydes, mediated by a bifunctional ureidopeptide‐based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen‐bond donor groups in the catalyst structure promoted the exclusive generation of the α‐keto amide enolate which reacted with either non‐enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side‐products resulting from dehydration, α‐keto amide self‐condensation, aldehyde enolization, and isotetronic acid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号