首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium‐ion batteries (SIBs) are regarded as an attractive alternative to lithium‐ion batteries (LIBs) for large‐scale commercial applications, because of the abundant terrestrial reserves of sodium. Exporting suitable anode materials is the key to the development of SIBs and LIBs. In this contribution, we report on the fabrication of Bi@C microspheres using aerosol spray pyrolysis technique. When used as SIBs anode materials, the Bi@C microsphere delivered a high capacity of 123.5 mAh g?1 after 100 cycles at 100 mA g?1. The rate performance is also impressive (specific capacities of 299, 252, 192, 141, and 90 mAh g?1 are obtained under current densities of 0.1, 0.2, 0.5, 1, and 2 A g?1, respectively). Furthermore, the Bi@C microsphere also proved to be suitable LIB anode materials. The excellent electrochemical performance for both SIBs and LIBs can attributed to the Bi@C microsphere structure with Bi nanoparticles uniformly dispersed in carbon spheres.  相似文献   

2.
Sodium‐ion batteries (SIBs) have attracted much attention for application in large‐scale grid energy storage owing to the abundance and low cost of sodium sources. However, low energy density and poor cycling life hinder practical application of SIBs. Recently, substantial efforts have been made to develop electrode materials to push forward large‐scale practical applications. Carbon materials can be directly used as anode materials, and they show excellent sodium storage performance. Additionally, designing and constructing carbon hybrid materials is an effective strategy to obtain high‐performance anodes for SIBs. In this review, we summarize recent research progress on carbon and carbon hybrid materials as anodes for SIBs. Nanostructural design to enhance the sodium storage performance of anode materials is discussed, and we offer some insight into the potential directions of and future high‐performance anode materials for SIBs.  相似文献   

3.
Mesoporous SnO microspheres were synthesised by a hydrothermal method using NaSO4 as the morphology directing agent. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high‐resolution transmission electron microscopy (HRTEM) analyses showed that SnO microspheres consist of nanosheets with a thickness of about 20 nm. Each nanosheet contains a mesoporous structure with a pore size of approximately 5 nm. When applied as anode materials in Na‐ion batteries, SnO microspheres exhibited high reversible sodium storage capacity, good cyclability and a satisfactory high rate performance. Through ex situ XRD analysis, it was found that Na+ ions first insert themselves into SnO crystals, and then react with SnO to generate crystalline Sn, followed by Na–Sn alloying with the formation of crystalline NaSn2 phase. During the charge process, there are two slopes corresponding to the de‐alloying of Na–Sn compounds and oxidisation of Sn, respectively. The high sodium storage capacity and good electrochemical performance could be ascribed to the unique hierarchical mesoporous architecture of SnO microspheres.  相似文献   

4.
Sodium‐ion batteries are a very promising alternative to lithium‐ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long‐term stability still hinder their practical application. A cathode material, formed of RuO2‐coated Na3V2O2(PO4)2F nanowires, has a 50 nm diameter with the space group of I4/mmm. When used as a cathode material for Na‐ion batteries, a reversible capacity of 120 mAh g?1 at 1 C and 95 mAh g?1 at 20 C can be achieved after 1000 charge–discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3V2O2(PO4)2F nanowires.  相似文献   

5.
Mesoporous Pd nanoparticles (MPNs) enclosed by high‐index facets have been successfully prepared by taking advantage of successive oxygen adsorption and desorption caused by the oxidative etching effect. The as‐prepared MPNs exhibit excellent performance toward formic acid electro‐oxidation, which is due to the synergetic effect between the diffusion‐feasible tubular mesochannels and the high index facets.  相似文献   

6.
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium‐ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal‐organic‐frameworks with well‐controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4@NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni?Co‐based metal‐organic framework (NiCo‐MOF) and characterized by scanning electron microscopy, transition electron microscopy, X‐Ray diffraction, X‐Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4@NC composite exhibits a capacity of 325 mAh g?1 at a current density of 1 A g?1, and 277.8 mAh g?1 at 10 A g?1. Most importantly, the NiCoSe4@NC retains a capacity of 293 mAh g?1 at 1 A g?1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.  相似文献   

7.
The sluggish sodium reaction kinetics, unstable Sn/Na2O interface, and large volume expansion are major obstacles that impede practical applications of SnO2‐based electrodes for sodium‐ion batteries (SIBs). Herein, we report the crafting of homogeneously confined oxygen‐vacancy‐containing SnO2?x nanoparticles with well‐defined void space in porous carbon nanofibers (denoted SnO2?x/C composites) that address the issues noted above for advanced SIBs. Notably, SnO2?x/C composites can be readily exploited as the working electrode, without need for binders and conductive additives. In contrast to past work, SnO2?x/C composites‐based SIBs show remarkable electrochemical performance, offering high reversible capacity, ultralong cyclic stability, and excellent rate capability. A discharge capacity of 565 mAh g?1 at 1 A g?1 is retained after 2000 cycles.  相似文献   

8.
Efficient and low‐cost anode materials for the sodium‐ion battery are highly desired to enable more economic energy storage. Effects on an ultrathin carbon nitride film deposited on a copper metal electrode are presented. The combination of effects show an unusually high capacity to store sodium metal. The g‐C3N4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical‐vapor deposition method. A high reversible capacity of formally up to 51 Ah g?1 indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na‐deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte.  相似文献   

9.
《化学:亚洲杂志》2017,12(1):116-121
Antimony/porous biomass carbon nanocomposites have been prepared by a chemical reduction method and applied as anodes for sodium‐ion batteries. The porous biomass carbon derived from a black fungus had a large Brunauer–Emmett–Teller (BET) surface area of 2233 m2 g−1 in which antimony nanoparticles were uniformly distributed in the porous carbon. The as‐prepared antimony/porous biomass carbon nanocomposites exhibited a high reversible sodium storage capacity of 567 mA h g−1 at a current density of 100 mA g−1, extended cycling stability, and good rate capability.  相似文献   

10.
近年来,由于锂资源逐渐紧缺而导致其成本增加,锂离子电池发展受到了限制. 作为一个有潜力的替代者,有着相似电化学机制且成本较低的钠离子电池则发展迅速. 但由于钠离子与锂离子相较有着更大半径,在钠离子脱嵌过程中,对大多数电极材料的晶体结构破坏严重. 因此,开发新型电极材料对钠离子电池的进一步发展尤为重要. 其中,层状钒氧化物作为正极材料被广泛研究. 在这项工作中,作者基于钒氧化物,引入钼元素并与碳复合,首次设计合成了一种新型的碳复合钼掺杂的钒氧化物纳米线电极材料,并获得了优良的电化学性能(在50 mA•g-1的电流密度下,最高放电比容量达135.9 mAh•g-1,并在循环75次后仍有82.6mAh•g-1的可逆容量,容量保持率高达71.8%;在1000mA•g-1的高电流密度下循环并回到50mA•g-1后,可逆放电比容量仍能回复至111.5mAh•g-1). 本工作的研究结果证明,这种具有超大层间距的新型碳复合钼掺杂的钒氧化物纳米线是一种非常有潜力的储钠材料,并且我们的工作为钠离子电池的进一步发展提供了一定的理论基础.  相似文献   

11.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

12.
A layered composite with P2 and O3 integration is proposed toward a sodium‐ion battery with high energy density and long cycle life. The integration of P2 and O3 structures in this layered oxide is clearly characterized by XRD refinement, SAED and HAADF and ABF‐STEM at atomic resolution. The biphase synergy in this layered P2+O3 composite is well established during the electrochemical reaction. This layered composite can deliver a high reversible capacity with the largest energy density of 640 mAh g?1, and it also presents good capacity retention over 150 times of sodium extraction and insertion.  相似文献   

13.
Layered transition metal oxides NaxMO2 (M=transition metal) with P2 or O3 structure have attracted attention in sodium‐ion batteries (NIBs). A universal law is found to distinguish structural competition between P2 and O3 types based on the ratio of interlayer distances of the alkali metal layer d(O‐Na‐O) and transition‐metal layer d(O‐M‐O). The ratio of about 1.62 can be used as an indicator. O3‐type Na0.66Mg0.34Ti0.66O2 oxide is prepared as a stable anode for NIBs, in which the low Na‐content (ca. 0.66) usually undergoes a P2‐type structure with respect to NaxMO2. This material delivers an available capacity of about 98 mAh g?1 within a voltage range of 0.4–2.0 V and exhibits a better cycling stability (ca. 94.2 % of capacity retention after 128 cycles). In situ X‐ray diffraction reveals a single‐phase reaction in the discharge–charge process, which is different from the common phase transitions reported in O3‐type electrodes, ensuring long‐term cycling stability.  相似文献   

14.
As a promising positive electrode material for sodium‐ion batteries (SIBs), layered sodium oxides have attracted considerable attention in recent years. In this work, stoichiometric P2‐phase NaCo0.5Mn0.5O2 was prepared through the conventional solid‐state reaction, and its structural and physical properties were studied in terms of XRD, XPS, and magnetic susceptibility. Furthermore, the P2‐NaCo0.5Mn0.5O2 electrode delivered a discharge capacity of 124.3 mA h g?1 and almost 100 % initial coulombic efficiency over the potential window of 1.5–4.15 V. It also showed good cycle stability, with a reversible capacity and capacity retention reaching approximately 85 mA h g?1 and 99 %, respectively, at the 5 C rate after 100 cycles. Additionally, cyclic voltammetry and ex situ XRD were employed to explain the electrochemical behavior at the different electrochemical stages. Owing to the applicable performances, P2‐NaCo0.5Mn0.5O2 can be considered as a potential positive electrode material for SIBs.  相似文献   

15.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

16.
17.
Transition metal oxides are regarded as promising anode materials for lithium‐ion batteries because of their high theoretical capacities compared with commercial graphite. Unfortunately, the implementation of such novel anodes is hampered by their large volume changes during the Li+ insertion and extraction process and their low electric conductivities. Herein, we report a specifically designed anode architecture to overcome such problems, that is, mesoporous peapod‐like Co3O4@carbon nanotube arrays, which are constructed through a controllable nanocasting process. Co3O4 nanoparticles are confined exclusively in the intratubular pores of the nanotube arrays. The pores between the nanotubes are open, and thus render the Co3O4 nanoparticles accessible for effective electrolyte diffusion. Moreover, the carbon nanotubes act as a conductive network. As a result, the peapod‐like Co3O4@carbon nanotube electrode shows a high specific capacity, excellent rate capacity, and very good cycling performance.  相似文献   

18.
A mesoporous flake‐like manganese‐cobalt composite oxide (MnCo2O4) is synthesized successfully through the hydrothermal method. The crystalline phase and morphology of the materials are characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller methods. The flake‐like MnCo2O4 is evaluated as the anode material for lithium‐ion batteries. Owing to its mesoporous nature, it exhibits a high reversible capacity of 1066 mA h g?1, good rate capability, and superior cycling stability. As an electrode material for supercapacitors, the flake‐like MnCo2O4 also demonstrates a high supercapacitance of 1487 F g?1 at a current density of 1 A g?1, and an exceptional cycling performance over 2000 charge/discharge cycles.  相似文献   

19.
MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100–150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m2 g?1. The MoS2@C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2. The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g?1 and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g?1, as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2@C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2, and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass‐ and charge‐transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge‐transfer reaction and the diffusivity of the MoS2@C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li‐ion battery market.  相似文献   

20.
Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state‐of‐art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy‐intensive. Three‐dimensional (3D) porous silicon‐based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li‐ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g?1 is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号