首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light‐emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation‐induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self‐assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high‐sensitivity detection and intracellular fluorescence imaging of biothiols.  相似文献   

2.
Reduction of uranyl(VI) to UV and to UIV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl UVI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [UVIO2(dpaea)] complex is readily converted into the cis‐boroxide UIV species via diborane‐mediated reductive functionalization in organic media. Remarkably, in aqueous media the uranyl(VI) complex is rapidly converted, by Na2S2O4, a reductant relevant for chemical remediation processes, into the stable uranyl(V) analogue, which is then slowly reduced to yield a water‐insoluble trinuclear UIV oxo‐hydroxo cluster. This report provides the first example of direct conversion of a uranyl(VI) compound into a well‐defined molecular UIV species in aqueous conditions.  相似文献   

3.
4.
Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine‐ and imidazole‐based donors have been used for self‐selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two‐component self‐assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non‐preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to PdII is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H‐bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10?5 to ca. 10?3 S cm?1) at ambient temperature under a relative humidity of circa 98 % with low activation energy.  相似文献   

5.
The anion [3,3′‐Co(C2B9H11)2]? ([COSAN]?) produces aggregates in water. These aggregates are interpreted to be the result of C?H???H?B interactions. It is possible to generate aggregates even after the incorporation of additional functional groups into the [COSAN]? units. The approach is to join two [COSAN]? anions by a linker that can adapt itself to act as a crown ether. The linker has been chosen to have six oxygen atoms, which is the ideal number for K+ selectivity in crown ethers. The linker binds the alkaline metal ions with different affinities; thus showing a distinct degree of selectivity. The highest affinity is shown towards K+ from a mixture containing Li+, Na+, K+, Rb+ and Cs+; this can be indicative of pseudo‐crown ether performance of the dumbbell. One interesting possibility is that the [COSAN]? anions at the two ends of the linker can act as a hook‐and‐loop fastener to close the ring. This facet is intriguing and deserves further consideration for possible applications. The distinct affinity towards alkaline metal ions is corroborated by solubility studies and isothermal calorimetry thermograms. Furthermore, cryoTEM micrographs, along with light scattering results, reveal the existence of small self‐assemblies and compact nanostructures ranging from spheres to single‐/multi‐layer vesicles in aqueous solutions. The studies reported herein show that these dumbbells can have different appearances, either as molecules or aggregates, in water or lipophilic phases; this offers a distinct model as drug carriers.  相似文献   

6.
7.
Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.  相似文献   

8.
High‐density polymer brushes on substrates exhibit unique properties and functions stemming from the extended conformations due to the surface constraint. To date, such chain organizations have been mostly attained by synthetic strategies of surface‐initiated living polymerization. We show herein a new method to prepare a high‐density polymer brush architecture using surface segregation and self‐assembly of diblock copolymers containing a side‐chain liquid‐crystalline polymer (SCLCP). The surface segregation is attained from a film of an amorphous base polymer (polystyrene, PS) containing a minor amount of a SCLCP‐PS diblock copolymer upon annealing above the glass‐transition temperature. The polystyrene portion of the diblock copolymer can work as a laterally mobile anchor for the favorable self‐assembly on the polystyrene base film.  相似文献   

9.
The current buzzword in science and technology is self‐assembly and molecular self‐assembly is one of the most prominent fields as far as research in chemical and biological sciences is concerned. Generally, self‐assembly of molecules occurs through weak non‐covalent interactions like hydrogen bonding, π–π stacking, hydrophobic effects, etc. Inspired by many natural systems consisting of self‐assembled structures, scientists have been trying to understand their formation and mimic such processes in the laboratory to create functional “smart” materials, which respond to temperature, light, pH, electromagnetic field, mechanical stress, and/or chemical stimuli. These responses are usually manifested as remarkable changes from the molecular (e. g., conformational state, hierarchical order) to the macroscopic level (e. g., shape, surface properties). Many molecules such as peptides, viruses, and surfactants are known to self‐assemble into different structures. Among them, glycolipids are the new entries in the area of molecules that are being investigated for their self‐assembly characteristics. Among the different classes of glycolipids like rhamnolipids and trehalose lipids, owing to their biological preparations and their structural novelty, sophorolipids (SLs) are evoking greater interest among researchers. Sophorolipids are a class of asymmetric bolas bearing COOH groups at one end and sophorose (dimeric glucose linked by an unusual β(1→2) linkage). The extreme membrane stability of Archaea, attributed to the membrane‐spanning bolas (tetraether glycolipids), has inspired chemists to unravel the molecular designs that underpin the self‐assembly of bolaamphiphilic molecules. Apart from these self‐assembled structures, bolaamphiphiles find applications in many fields such as drug delivery, membrane mimicking, siRNA therapies, etc. The first part of this Personal Account presents some possible self‐assembled structures of bolaamphiphiles and their mechanism of formation. The later part covers our work on one of the typical bolaamphiphiles known as sophorolipids.  相似文献   

10.
Actinide oxo clusters are an important class of compounds due to their impact on actinide migration in the environment. The photolytic reduction of uranyl(VI) has potential application in catalysis and spent nuclear fuel reprocessing, but the intermediate species involved in this reduction have not yet been elucidated. Here we show that the photolysis of partially hydrated uranyl(VI) in anaerobic conditions leads to the reduction of uranyl(VI), and to the incorporation of the resulting UV species into the stable mixed‐valent star‐shaped UVI/UV oxo cluster [U(UO2)53‐O)5(PhCOO)5(Py)7] ( 1 ). This cluster is only the second example of a UVI/UV cluster and the first one associating uranyl groups to a non‐uranyl(V) center. The UV center in 1 is stable, while the reaction of uranyl(V) iodide with potassium benzoate leads to immediate disproportionation and formation of the U12IVU4VO24 cluster {[K(Py)2]2[K(Py)]2[U16O24(PhCOO)24(Py)2]} ( 5 ).  相似文献   

11.
Tile‐based self‐assembly is a powerful method in DNA nanotechnology and has produced a wide range of well‐defined nanostructures. But the resulting structures are relatively simple. Increasing the structural complexity and the scope of the accessible structures is an outstanding challenge in molecular self‐assembly. A strategy to partially address this problem by introducing flexibility into assembling DNA tiles and employing directing agents to control the self‐assembly process is presented. To demonstrate this strategy, a range of DNA nanocages have been rationally designed and constructed. Many of them can not be assembled otherwise. All of the resulting structures have been thoroughly characterized by gel electrophoresis and cryogenic electron microscopy. This strategy greatly expands the scope of accessible DNA nanostructures and would facilitate technological applications such as nanoguest encapsulation, drug delivery, and nanoparticle organization.  相似文献   

12.
Mixed‐metal uranium compounds are very attractive candidates in the design of single‐molecule magnets (SMMs), but only one 3d–5f hetero‐polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d–5f complexes self‐assembled by cation–cation interactions between a uranyl(V) complex and a TPA‐capped MII complex (M=Mn ( 1 ), Cd ( 2 ); TPA=tris(2‐pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1 , which contains an almost linear {Mn? O?U?O? Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K—the highest reported for a mono‐uranium system—arising from intramolecular Mn–U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.  相似文献   

13.
14.
Polymerization‐induced self‐assembly (PISA) was employed to compare the self‐assembly of different amphiphilic block copolymers. They were obtained by emulsion polymerization of styrene in water using hydrophilic poly(N‐acryloylmorpholine) (PNAM)‐based macromolecular RAFT agents with different structures. An average of three poly (ethylene glycol acrylate) (PEGA) units were introduced either at the beginning, statistically, or at the end of a PNAM backbone, resulting in formation of nanometric vesicles and spheres from the two former macroRAFT architectures, and large vesicles from the latter. Compared to the spheres obtained with a pure PNAM macroRAFT agent, composite macroRAFT architectures promoted a dramatic morphological change. The change was induced by the presence of PEGA hydrophilic side‐chains close to the hydrophobic polystyrene segment.  相似文献   

15.
The last decade has witnessed rapid developments in aggregation‐induced emission (AIE). In contrast to traditional aggregation, which causes luminescence quenching (ACQ), AIE is a reverse phenomenon that allows robust luminescence to be retained in aggregated and solid states. This makes it possible to fabricate various highly efficient luminescent materials, which opens new paradigms in a number of fields, such as imaging, sensing, medical therapy, light harvesting, light‐emitting devices, and organic electronic devices. Of the various important features of AIE molecules, their self‐assembly behavior is very attractive because the formation of a well‐defined emissive nanostructure may lead to advanced applications in diverse fields. However, due to the nonplanar topology of AIEgens, it is not easy for them to self‐assemble into well‐defined structures. To date, some strategies have been proposed to achieve the self‐assembly of AIEgens. Herein, we summarize the most recent approaches for the self‐assembly of AIE molecules. These approaches can be sorted into two classes: 1) covalent molecular design and 2) noncovalent supramolecular interactions. We hope this will inspire more excellent work in the field of AIE.  相似文献   

16.
17.
A molecular photochromic spiropyran–polyoxometalate–alkyl organic–inorganic hybrid has been synthesized and fully characterized. The reversible switching of the hydrophobic spiropyran fragment to the hydrophilic merocyanine one can be easily achieved under light irradiation at different wavelengths. This switch changes the amphiphilic feature of the hybrid, leading to a light‐controlled self‐assembly behavior in solution. It has been shown that the hybrid can reversibly self‐assemble into vesicles in polar solvents and irreversibly into reverse vesicles in non‐polar solvents. The sizes of the vesicles and the reverse vesicles are both tunable by the polarity of the solvent, with the hydrophobic interactions being the main driving force.  相似文献   

18.
《化学:亚洲杂志》2017,12(8):841-845
Sequence‐defined chiral polyimides comprising identical asymmetric diamine monomers arranged in different directions along the main chain were designed and prepared. These new sequence‐defined polymers exhibit sequence‐dependent self‐assembly behaviors and responses to ibuprofen enantiomers, as revealed by their chiroptical spectra and gelation properties. For the first time, the self‐assembly of polymers and their interactions with guest molecules have been successfully controlled by means of the directional arrangement of the monomers in their polymer backbones.  相似文献   

19.
We herein describe the tandem molecular self‐assembly of a peptide derivative ( 1 ) that is controlled by a combination of enzymatic and chemical reactions. In phosphate‐buffered saline (PBS), compound 1 self‐assembles first into nanoparticles by phosphatase and then into nanofibers by glutathione. Liver cancer cells exhibit higher concentrations of both phosphatase and GSH than normal cells. Therefore, the tandem self‐assembly of 1 also occurs in the liver cancer cell lines HepG2 and QGY7703; compound 1 first forms nanoparticles around the cells and then forms nanofibers inside the cells. Owing to this self‐assembly mechanism, compound 1 exhibits large ratios for cellular uptake and inhibition of cell viability between liver cancer cells and normal liver cells. We envision that using both extracellular and intracellular reactions to trigger tandem molecular self‐assembly could lead to the development of supramolecular nanomaterials with improved performance in cancer diagnostics and therapy.  相似文献   

20.
The self‐assembly of nanostructures is dominated by a limited number of strong coordination elements. Herein, we show that metal–acetylene π‐coordination of a tripodal ligand (L) with acetylene spacers gave an M3L2 double‐propeller motif (M=CuI or AgI), which dimerized into an M6L4 interlocked cage (M=CuI). Higher (M3L2)n oligomers were also selectively obtained: an M12L8 truncated tetrahedron (M=CuI) and an M18L12 truncated trigonal prism (M=AgI), both of which contain the same double‐propeller motif. The higher oligomers exhibit multiply entangled facial structures that are classified as a trefoil knot and a Solomon link. The inner cavities of the structures encapsulate counteranions, revealing a potential new strategy towards the synthesis of functional hollow structures that is powered by molecular entanglements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号