首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Self‐assembled copper(II) complexes are described as effective catalysts for nitroaldol (Henry) reactions on water. The protocol involves a heterogeneous process and the catalysts can be recovered and recycled without loss of activity. Further, C2‐symmetric N,N′‐substituted chiral copper(II) salan complexes are found to be more effective catalysts than chiral copper(II) salen complexes for reactions in homogeneous catalysis, with high enantioselectivities. The reactions involve bifunctional catalysis, bearing the properties of a Brønsted base, as well as a Lewis acid, to effect the reaction in the absence of external additives.  相似文献   

2.
Iridium(III) complexes containing a designed ligand, 2‐amino‐7‐(2‐pyridinyl)‐1,8‐naphthyridine derivative, were prepared and all complexes were characterized using spectroscopic and crystallographic methods. These new Ir(III) complexes are able to act as catalysts for the C‐alkylation of aryl alkyl ketones with the use of alcohols as the alkylating agent. Typically, acetophenone undergoes alkylation with methanol and ethanol to yield isobutyrophenone and butyrophenone, respectively.  相似文献   

3.
Novel cationic ruthenium(II) complexes bearing a 4,5‐diazafluorene unit and p‐cymene as ligands have been synthesised. The complexes were characterised based on elemental analysis and Fourier transform infrared and nuclear magnetic resonance spectroscopies. The synthesised Ru(II) complexes were employed as pre‐catalysts for the transfer hydrogenation of aromatic ketones using 2‐propanol as both hydrogen source and solvent in the presence of NaOH. All complexes showed high catalytic activity as catalysts in the reduction of substituted acetophenones to corresponding secondary alcohols. The products of catalysis were obtained with conversion rates of between 80 and 99%. Among the seven new complexes investigated, the most efficient catalyst showed turnover frequencies in the range 255–291 h?1 corresponding to 85 to 97% conversion, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Ruthenium complexes [RuCl2L2] were prepared by treating [RuCl2(p‐cymene)]2 with structurally similar N‐(2‐(diphenylphosphino)benzylidene)‐3‐methylpyridin‐2‐amine, 4‐(2‐(diphenylphosphino)benzylideneamino)‐3‐methylphenol and 4‐(2‐(2‐(diphenylphosphino)benzylideneamino)ethyl)phenol refluxed in toluene. These complexes were used as catalysts for the transfer hydrogenation of acetophenones in 2‐propanol and for the direct hydrogenation of styrenes under hydrogen pressure. The results of the catalytic studies provide evidence that these complexes function as excellent catalysts for hydrogenation and transfer hydrogenation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
[RuLCl(p ‐cymene)] (L = N ‐arylsulfonylphenylenediamine) complexes ( 2 a – d ) were synthesized from the reaction between [Ru(p ‐cymene)Cl2]2 and ligand. Additionally, SBA‐15–[RuLCl(p ‐cymene)] derived catalysts ( 3 a – d ) were successfully immobilized onto mesoporous silica (SBA‐15) by an easily accessible approach. The structural elucidations of 2 a – d and 3 a – d were carried out with various methods such as 1H NMR, 13C NMR and infrared spectroscopies, elemental analysis, thermogravimetric/differential thermal analysis, nitrogen adsorption–desorption and scanning electron microscopy/energy‐dispersive X‐ray analysis. The Ru(II) complexes and materials were found to be highly active and selective catalysts for the transfer hydrogenation (TH) reaction of aldehydes and ketones. The influence of various 1,2‐phenylenediamines on the reactivity of the catalysts (complexes or materials) was studied and the catalysts ( 2 d and 3 d ) with a 4,5‐dichlorophenylenediamine substituent showed the best activity (the maximum turnover frequencies are 2916 and 2154 h−1 for TH of 4‐fluoroacetophenone, and 6000 and 4956 h−1 for TH of 4‐chlorobenzaldehyde).  相似文献   

6.
Copper complexes of chiral quinolinyl‐oxazoline have been studied as the catalysts for enantioselective allylic oxidation of cycloalkenes with tert‐butyl perbenzoate. Using 5 mol% of these chiral catalysts, optical active allylic benzoates were obtained in moderate enantiomeric excesses. CuOTf prepared in situ, CuClO4 and CuPF6 were found to be good precatalysts in acetone.  相似文献   

7.
Boehmite nanoparticles, with high surface area and high degree of surface hydroxyl groups, were prepared via hydrothermal‐assisted sol–gel processing of aluminium 2‐butoxide. The produced powder was covalently functionalized with 3‐(trimethoxysilyl)propylamine, and then, in order to support vanadium oxosulfate and molybdenum hexacarbonyl complexes, all the terminal amine groups were changed to Schiff bases by refluxing with salicylaldehyde. These catalysts were applied in the epoxidation of cis‐cyclooctene and other olefins with tert‐BuOOH in CCl4. The catalytic procedures for both catalysts were optimized for various parameters such as solvent and oxidant. Recycling experiments revealed that these heterogeneous nano‐catalysts could be repeatedly applied for the epoxidation of alkenes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Chiral secondary alcohols are very important building blocks and valuable synthetic intermediates both in organic synthesis and in the pharmaceutical industry for producing biologically active complex molecules. A series of new chiral Ru–phosphinite complexes ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) were prepared from chiral C2‐symmetric ferrocenyl phosphinites and corresponding chloro complex, [Ru(η6p‐cymene)(μ‐Cl)Cl]2. The complexes were characterized using conventional spectroscopic methods. The binuclear complexes were tested as pre‐catalysts and were found to be good pre‐catalysts for the asymmetric transfer hydrogenation of substituted acetophenones in basic 2‐propanol at 82°C, providing the corresponding optically active alcohols with almost quantitative conversion and modest to high enantioselectivities (46–97%). Amongst the all complexes, complex 6 gave the highest ee of 97% in the reduction of 2‐methoxyacetophenone to (S)‐1‐(2‐methoxyphenyl)ethanol at 82°C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The common use of NHC complexes in transition‐metal mediated C–C coupling and metathesis reactions in recent decades has established N‐heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC‐containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of complexes with chiral, chelating bis(NHC) ligands are rare. In the present work new chiral iridium(I) bis(NHC) complexes and their application in the asymmetric transfer hydrogenation of ketones are described. A series of chiral bis(azolium) salts have been prepared following a synthetic pathway, starting from L ‐valinol and the modular buildup allows the structural variation of the ligand precursors. The iridium complexes were formed via a one‐pot transmetallation procedure. The prepared complexes were applied as catalysts in the asymmetric transfer hydrogenation of various prochiral ketones, affording the corresponding chiral alcohols in high yields and moderate to good enantioselectivities of up to 68%. The enantioselectivities of the catalysts were strongly affected by the various, terminal N‐substituents of the chelating bis(NHC) ligands. The results presented in this work indicate the potential of bis‐carbenes as stereodirecting ligands for asymmetric catalysis and are offering a base for further developments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis and characterization of several hexa‐coordinated ruthenium(III) complexes of the type [RuCl(PPh3)2(L)] (L = dibasic tridentate ligand derived by the condensation of salicylaldehyde/o‐vanillin with o‐aminophenol/o‐aminothiophenol) are reported. IR, electronic, EPR spectral data and redox bahaviour of the complexes are discussed. An octahedral geometry has been tentatively proposed for all the complexes. The new complexes were found to be effective catalysts for the oxidation of benzyl alcohol and cyclohexanol to benzaldehyde and cyclohexanone respectively using N‐methylmorpholine‐N‐oxide as a co‐oxidant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Based on two well‐established ligand systems, the aminopyridinato (Ap) and the phenoxyimine (FI) ligand systems, new Ap‐FI hybrid ligands were developed. Four different Ap‐FI hybrid ligands were synthesized through a simple condensation reaction and fully characterized. The reaction of hafnium tetrabenzyl with all four Ap‐FI hybrid ligands exclusively led to mono(Ap‐FI) complexes of the type [(Ap‐FI)HfBn2]. The ligands acted as tetradentate dianionic chelates. Upon activation with tris(pentafluorophenyl)borane, the hafnium‐dibenzyl complexes led to highly active catalysts for the polymerization of 1‐hexene. Ultrahigh molecular weights and extremely narrow polydispersities support the living nature of this polymerization process. A possible deactivation product of the hafnium catalysts was characterized by single‐crystal X‐ray analysis and is discussed. The coordination modes of these new ligands were studied with the help of model titanium complexes. The reaction of titanium(IV) isopropoxide with ligand 1 led to a mono(Ap‐FI) complex, which showed the desired facmer coordination mode. Titanium (IV) isopropoxide reacted with ligand 4 to give a complex of the type [(ApH‐FI)2Ti(OiPr)2], which featured the ligand in its monoanionic form. The two titanium complexes were characterized by X‐ray crystal‐structure analysis.  相似文献   

12.
A short overview on the structural design of the Hoveyda–Grubbs‐type ruthenium initiators chelated through oxygen, nitrogen or sulfur atoms is presented. Our aim was to compare and contrast O‐, N‐ and S‐chelated ruthenium complexes to better understand the impact of electron‐withdrawing and ‐donating substituents on the geometry and activity of the ruthenium complexes and to gain further insight into the transcis isomerisation process of the S‐chelated complexes. To evaluate the different effects of chelating heteroatoms and to probe electronic effects on sulfur‐ and nitrogen‐chelated latent catalysts, we synthesised a series of novel complexes. These catalysts were compared against two well‐known oxygen‐chelated initiators and a sulfoxide‐chelated complex. The structures of the new complexes have been determined by single‐crystal X‐ray diffraction and analysed to search for correlations between the structural features and activity. The replacement of the oxygen‐chelating atom by a sulfur or nitrogen atom resulted in catalysts that were inert at room temperature for typical ring‐closing metathesis (RCM) and cross‐metathesis reactions and showed catalytic activity only at higher temperatures. Furthermore, one nitrogen‐chelated initiator demonstrated thermo‐switchable behaviour in RCM reactions, similar to its sulfur‐chelated counterparts.  相似文献   

13.
As a new class of potential catalysts for 1,3‐dipolar cycloaddition reactions, fourteen L‐amino acid Schiff base Cu(II) and Ti(IV) complexes were synthesized, characterized, and evaluated for their catalytic activities in the reaction between C,N‐diphenylnitrone and electron‐rich ethyl vinyl ether under both homogeneous and in situ conditions. The methods for preparation and utilization of the catalysts were elucidated in detail, and the results of the catalytic reactions were described and discussed as well. Excellent reaction results were found in the presence of some catalysts (20 mol%) with > 90% endo‐isoazolidines produced, compared with predominantly exo‐isoazolidine produced without a catalyst. In addition, the reaction rate is found to be enhanced remarkably by a Cu(II) complex Schiff base catalyst at room temperature.  相似文献   

14.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

15.
A new thiol‐functionalized epoxy resin as a support for palladium(II) complexes has been synthesized in good yields. A palladium catalyst was ‘heterogenized’ by anchoring [PdCl2(PhCN)2] complexes to these thiol‐functionalized polymers via ligand exchange reaction. These new palladium catalysts were tested in Mizoroki–Heck coupling and hydrogenation reactions. The activity of the complexes in terms of yield is comparable to that of homogeneous PdCl2(PhCN)2. The stability and a good recycling efficiency of these catalysts make them useful for prolonged use. The constant and good selectivity of the supported catalysts during recycling experiments indicate that they could be useful for practical application in many organic reactions. To characterize the heterogeneous complexes before and after use, X‐ray photoelectron spectroscopy, infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray microscopy, atomic absorption spectroscopy and time‐of‐flight secondary ion mass spectrometry were applied. Density functional theory calculations were also used to better understand the structures of the obtained palladium complexes. Polythiourethanes contain three atoms, oxygen, nitrogen and sulfur, capable of coordinating to transition metals. We examined the possibility of intra‐ and intermolecular binding for both cis and trans palladium complexes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The one‐pot metal templated synthesis of enantiopure binuclear Zn (II) complexes Zn2L1–Zn2L4 were obtained by treating (1R,2R)‐diphenylethylenediamine or (1S,2S)‐diphenylethylenediamine with 2‐hydroxy‐5‐methyl‐1,3‐benzenedicarboxaldehyde or 4‐tert‐butyl‐2,6‐diformylphenol and zinc acetate. The chiroptical properties of the complexes were studied by using circular dichroism spectroscopy. These ΔΔ and ΛΛ complexes were used as enantioselective catalysts for desymmetrization of meso diol to achieve monobenzoylated product with 96% yield and 88% ee.  相似文献   

17.
Chiral rhodium(III) complexes containing two cyclometalating 2‐phenyl‐5,6‐(S,S)‐pinenopyridine ligands and two additional acetonitriles are introduced as excellent catalysts for the highly enantioselective alkynylation of 2‐trifluoroacetyl imidazoles. Whereas the ligand‐based chirality permits the straightforward synthesis of the complexes in a diastereomerically and enantiomerically pure fashion, the metal‐centered chirality is responsible for the asymmetric induction over the course of the catalysis. For comparison, the analogous iridium congeners provide only low enantioselectivity, and previously reported benzoxazole‐ and benzothiazole‐based catalysts do not show any catalytic activity for this reaction under standard reaction conditions.  相似文献   

18.
A series of new alkyl mono‐ and bimetallic aluminum complexes supported by novel amidinate ligands has been prepared in very high yields. These complexes were fully characterized by spectroscopic methods. Alkyl aluminum complexes 1 – 6 were investigated as catalysts for the ring‐opening polymerization and copolymerization of ε‐caprolactone and L‐lactide. Under the optimal reaction conditions, complex 5 acts as an efficient single‐component initiator for the ring‐opening polymerization and copolymerization of cyclic esters to yield biodegradable polyester materials with narrow polydispersities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2397–2407  相似文献   

19.
Past research has examined the atom transfer radical polymerization (ATRP) with high oxidation state metal complexes and without the need for any additives such as reducing agent or free radical initiator. To extend this research, half‐metallocene ruthenium(III) (Ru(III)) catalysts were used for the polymerization of methyl methacrylate (MMA) for the first time. These catalysts were generated in situ simply by mixing phosphorus‐containing ligand and pentamethylcyclopentadienyl (Cp*) Ru(III) polymer ((Cp*RuCl2)n). The complexes in their higher oxidation state such as Cp*RuCl2(PPh3) were air‐stable, highly active, and removable catalysts for the ATRPs of MMA with both precision control of molecular weight and narrow polydispersity index. The addition of ppm amount of metal catalyst contributed to the formation of very well‐defined homopolymers and copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Chiral 1,5‐cyclooctadiene rhodium(I) cationic complexes with C2‐symmetric chelate diphosphoramidite ligands containing (R,R)‐1,2‐diaminocyclohexane as the backbone and two atropoisomeric biaryl units were easily synthesized and fully characterized by multinuclear one‐ and two‐dimensional NMR spectroscopy and elemental analysis. These complexes were used as catalysts in the asymmetric hydrogenation of dimethyl itaconate, methyl 2‐acetamidoacrylate and (Z)‐methyl‐2‐acetamido‐3‐phenylacrylate. The rhodium complexes derived from diphosphoramidite ligands that contain two (R) or (S) BINOL (2,2′‐dihydroxy‐1,1′‐binaphthyl) units proved to be efficient catalysts, giving complete conversion and very good enantioselectivity (up to 88% ee). An uncommon positive H2 pressure effect on the enantioselectivity was observed in the hydrogenation of dimethyl itaconate catalyzed by Rh‐complex with diphosphoramidite ligand that contains two (S)‐binaphthol moieties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号