首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Core‐shell carbon‐coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high‐power lithium‐ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon‐coated LiFePO4‐rGO (LFP/C‐rGO) hybrids were ascribed to three factors: 1) In‐situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4, 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C‐rGO hybrids with LFP/C‐rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li+ ion and electron transport for high power applications.  相似文献   

2.
Three‐dimensional (3D) interconnected metal alloy nanostructures possess superior catalytic performance owing to their advantageous characteristics, including improved catalytic activity, corrosion resistance, and stability. Hierarchically structured Ni‐Cu alloys composed of 3D network‐like microscopic branches with nanoscopic dendritic feelers on each branch were crafted by a facile and efficient hydrogen evolution‐assisted electrodeposition approach. They were subsequently exploited for methanol electrooxidation in alkaline media. Among three hierarchically structured Ni‐Cu alloys with different Ni/Cu ratios (Ni0.25Cu0.75, Ni0.50Cu0.50, and Ni0.75Cu0.25), the Ni0.75Cu0.25 electrode exhibited the fastest electrochemical response and highest electrocatalytic activity toward methanol oxidation. The markedly enhanced performance of Ni0.75Cu0.25 eletrocatalyst can be attributed to its alloyed structure with the proper Ni/Cu ratio and a large number of active sites on the surface of hierarchical structures.  相似文献   

3.
Investigations on Ag nanostructures/reduced graphene oxide composites have been frequently reported, yet the morphology control of those loaded Ag nanocrystals is still challenging. We herein develop a facile method to grow triangular Ag nanoplates (AgP) on polyethylenimine‐modified reduced graphene oxide (AgP/PEI‐rGO). The AgP/PEI‐rGO hybrids show unexpected high stability against chloride ions (Cl?) and hydrogen peroxide (H2O2), which is possibly due to the strong interaction between surface Ag atoms with the amine groups of PEI. In the chronoamperometry measurements for detecting H2O2, N2H4, and NaNO2, the AgP/PEI‐rGO hybrid shows very wide linear ranges (usually 10?6–10?2 mol L?1 for H2O2, N2H4, and NaNO2) and low detection limits (down to ≈1×10?7 mol L?1), which demonstrate the promising electrochemical sensor applications of these metal/graphene hybrids with well‐defined morphologies and facets. In addition, this strategy could be extended to the deposition of other noble metals on rGO with controlled morphologies.  相似文献   

4.
The oxygen evolution reaction (OER) is an important half reaction in many energy conversion and storage techniques. However, the development of a low‐cost easy‐prepared OER electrocatalyst with high mass activity and rapid kinetics is still challenging. Herein, we report the facile deposition of tannin‐NiFe (TANF) complex film on carbon fiber paper (CP) as a highly efficient OER electrocatalyst. TANF gives rapid OER reaction kinetics with a very small Tafel slope of 28 mV dec?1. The mass activity of TANF reaches 9.17×103 Ag?1 at an overpotential of 300 mV, which is nearly 200‐times larger than that of NiFe double layered hydroxide. Furthermore, tannic acid in TANF can be electrochemically extracted under anodic potential, leaving the inorganic composite NixFe1?xOyHz as the OER‐active species. This work may provide a guide to probing the electrochemical transformation and investigating the reactive species of other metal–organic complexes as heterogeneous electrocatalysts.  相似文献   

5.
Developing high‐efficiency and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a crucial bottleneck on the way to the practical applications of rechargeable energy storage technologies and water splitting for producing clean fuel (H2). In recent years, NiFe‐based materials have proven to be excellent electrocatalysts for OER. Understanding the characteristics that affect OER activity and determining the OER mechanism are of vital importance for the development of OER electrocatalysts. Therefore, in situ characterization techniques performed under OER conditions are urgently needed to monitor the key intermediates together with identifying the OER active centers and phases. In this Minireview, recent advances regarding in situ techniques for the characterization of NiFe‐based electrocatalysts are thoroughly summarized, including Raman spectroscopy, X‐ray absorption spectroscopy, ambient pressure X‐ray photoelectron spectroscopy, Mössbauer spectroscopy, Ultraviolet–visible spectroscopy, differential electrochemical mass spectrometry, and surface interrogation scanning electrochemical microscopy. The results from these in situ measurements not only reveal the structural transformation and the progressive oxidation of the catalytic species under OER conditions, but also disclose the crucial role of Ni and Fe during the OER. Finally, the need for developing new in situ techniques and theoretical investigations is discussed to better understand the OER mechanism and design promising OER electrocatalysts.  相似文献   

6.
Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Herein we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe‐LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe‐O‐Fe moieties. These Fe2+‐containing NiFe‐LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA cm?2, which is among the best OER catalytic performance to date. In‐situ X‐ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe‐O‐Fe motifs could stabilize high‐valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.  相似文献   

7.
《中国化学》2017,35(9):1405-1410
Pd and Pdx Ni nanoparticles have been supported on reduced graphene oxide (Pd/rGO and Pdx Ni/rGO ) by using the microwave‐assisted heating method in glycol. The morphology, composition and electrochemical performance have been characterized by TEM , XRD , XPS and electrochemical methods. The XRD and XPS results show that there are no PdNi alloy particles formed in Pdx Ni/rGO and the composites exist mostly in the form of Pd0 and NiOOH species. The electrochemical results reveal that Pdx Ni/rGO synthesized from the feeding source of Pd and Ni with an atomic ratio of 4∶1 exhibits higher activity, better stability and smaller electron transfer resistance toward formic acid electro‐oxidation compared with commercial Pd/C, Pd/rGO and other Pdx Ni/rGO samples. The excellent electrocatalytic performance indicates that the addition of appropriate amount of Ni can greatly enhance the activity and stability of Pd catalysts for formic acid oxidation.  相似文献   

8.
Pyrolysis of a bimetallic metal–organic framework (MIL‐88‐Fe/Ni)‐dicyandiamide composite yield a Fe and Ni containing carbonaceous material, which is an efficient bifunctional electrocatalyst for overall water splitting. FeNi3 and NiFe2O4 are found as metallic and metal oxide compounds closely embedded in an N‐doped carbon–carbon nanotube matrix. This hybrid catalyst (Fe‐Ni@NC‐CNTs) significantly promotes the charge transfer efficiency and restrains the corrosion of the metallic catalysts, which is shown in a high OER and HER activity with an overpotential of 274 and 202 mV, respectively at 10 mA cm?2 in alkaline solution. When this bifunctional catalyst was further used for H2 and O2 production in an electrochemical water‐splitting unit, it can operate in ambient conditions with a competitive gas production rate of 1.15 and 0.57 μL s?1 for hydrogen and oxygen, respectively, showing its potential for practical applications.  相似文献   

9.
It is extremely desirable to explore high-efficient, affordable and robust oxygen electrocatalysts toward rechargeable Zn–air batteries (ZABs). A 3D porous nitrogen-doped graphene encapsulated metallic Ni3Fe alloy nanoparticles aerogel (Ni3Fe-GA1) was constructed through a facile hydrothermal assembly and calcination process. Benefiting from 3D porous configuration with great accessibility, high electrical conductivity, abundant active sites, optimal nitrogen content and strong electronic interactions at the Ni3Fe/N-doped graphene heterointerface, the obtained aerogel showed outstanding catalytic performance toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, it exhibited an overpotential of 239 mV to attain 10 mA cm−2 for OER, simultaneously providing a positive onset potential of 0.93 V within a half-wave potential of 0.8 V for ORR. Accordingly, when employed in the aqueous ZABs, Ni3Fe-GA1 achieved higher power density and superior reversibility than Pt/C−IrO2 catalyst, making it a potential candidate for rechargeable ZABs.  相似文献   

10.
Metal–organic frameworks (MOFs) are a class of promising materials for diverse heterogeneous catalysis, but they are usually not directly employed for oxygen evolution electrocatalysis. Most reports focus on using MOFs as templates to in situ create efficient electrocatalysts through annealing. Herein, we prepared a series of Fe/Ni‐based trimetallic MOFs (Fe/Ni/Co(Mn)‐MIL‐53 accordingly to the Material of Institute Lavoisier) by solvothermal synthesis, which can be directly adopted as highly efficient electrocatalysts. The Fe/Ni/Co(Mn)‐MIL‐53 shows a volcano‐type oxygen evolution reaction (OER) activity as a function of compositions. The optimized Fe/Ni2.4/Co0.4‐MIL‐53 can reach a current density of 20 mA cm?2 at low overpotential of 236 mV with a small Tafel slope of 52.2 mV dec?1. In addition, the OER performance of these MOFs can be further enhanced by directly being grown on nickel foam (NF).  相似文献   

11.
Developing highly efficient nickel or iron based hydroxide electrocatalysts is primary essential but challenging for oxygen evolution reaction (OER) at ultra-high current densities. Herein, we developed a facile method to prepare nitrogen and iron doped nickel(II) hydroxide nanosheets on self-supported conductive nickel foam (denoted as Fe,N-Ni(OH)2/NF) through ammonia hydrothermal and impregnation methods. Owing to the optimization of the electronic structure by nitrogen doping and the strong synergistic effect between Fe and Ni(OH)2, the three-dimensional (3D) Fe,N-Ni(OH)2/NF nanosheets delivered superior electrocatalytic OER performances in basic solution with low potentials of 1.57 V and 1.59 V under 500 mA/cm2 and 1000 mA/cm2 respectively and robust operation for 10 h with ignored activity decay, comparing well with the potentials of previously reported NiFe based electrocatalysts as well as the benchmark commercial Ir/C/NF. In-situ Raman spectroscopy revealed that the main active species were NiOOH during the OER process. The present results are expected to provide new insights into the study of OER process towards ultra-high current densities.  相似文献   

12.
《化学:亚洲杂志》2017,12(20):2720-2726
Iron‐based (oxy)hydroxides are especially attractive electrocatalysts for the oxygen evolution reaction (OER) owing to their earth abundance, low cost, and nontoxicity. However, poor OER kinetics on the surface restricts the performance of the FeOOH electrocatalyst. Herein, a highly efficient and stable Ni(OH)2/β‐like FeOOH electrocatalyst is obtained by facile electroactivation treatment. The activated Ni(OH)2/β‐like FeOOH sample indicates an overpotential of 300 mV at 10 mA cm−2 for the OER, and no clear current decay after 50 h of testing; this is comparable to the most efficient nickel‐ and cobalt‐based electrocatalysts on planar substrates. Furthermore, studies suggest that β‐like FeOOH plays a key role in remarkably enhancing the performance during the electroactivation process owing to its metastable tunnel structure with a lower barrier for interface diffusion of Ni2+ ions between the bilayer electrocatalyst. This study develops a new strategy to explore efficient and low‐cost electrocatalysts and deepens understanding of bilayer electrocatalysts for the OER.  相似文献   

13.
The development of durable, low‐cost, and efficient photo‐/electrolysis for the oxygen and hydrogen evolution reactions (OER and HER) is important to fulfill increasing energy requirements. Herein, highly efficient and active photo‐/electrochemical catalysts, that is, CoMn‐LDH@g‐C3N4 hybrids, have been synthesized successfully through a facile in situ co‐precipitation method at room temperature. The CoMn‐LDH@g‐C3N4 composite exhibits an obvious OER electrocatalytic performance with a current density of 40 mA cm?2 at an overpotential of 350 mV for water oxidation, which is 2.5 times higher than pure CoMn‐LDH nanosheets. For HER, CoMn‐LDH@g‐C3N4 (η50=?448 mV) requires a potential close to Pt/C (η50=?416 mV) to reach a current density of 50 mA cm2. Furthermore, under visible‐light irradiation, the photocurrent density of the CoMn‐LDH@g‐C3N4 composite is 0.227 mA cm?2, which is 2.1 and 3.8 time higher than pristine CoMn‐LDH (0.108 mA cm?2) and g‐C3N4 (0.061 mA cm?2), respectively. The CoMn‐LDH@g‐C3N4 composite delivers a current density of 10 mA cm?2 at 1.56 V and 100 mA cm?2 at 1.82 V for the overall water‐splitting reaction. Therefore, this work establishes the first example of pure CoMn‐LDH and CoMn‐LDH@g‐C3N4 hybrids as electrochemical and photoelectrochemical water‐splitting systems for both OER and HER, which may open a pathway to develop and explore other LDH and g‐C3N4 nanosheets as efficient catalysts for renewable energy applications.  相似文献   

14.
Tuning the crystal phase of metal alloy nanomaterials has been proved a significant way to alter their catalytic properties based on crystal structure and electronic property. Herein, we successfully developed a simple strategy to controllably synthesize a rare crystal structure of hexagonal close‐packed (hcp) NiFe nanoparticle (NP) encapsulated in a N‐doped carbon (NC) shell (hcp‐NiFe@NC). Then, we systemically investigated the oxygen evolution reaction (OER) performance of the samples under alkaline conditions, in which the hcp‐NiFe@NC exhibits superior OER activity compared to the conventional face‐centered cubic (fcc) NiFe encapsulated in a N‐doped carbon shell (fcc‐NiFe@NC). At the current densities of 10 and 100 mA cm?2, the hcp‐NiFe@NC with Fe/Ni ratio of ≈5.4 % only needs ultralow overpotentials of 226 mV and 263 mV versus reversible hydrogen electrode in 1.0 m KOH electrolyte, respectively, which were extremely lower than those of fcc‐NiFe@NC and most of other reported NiFe‐based electrocatalysts. We proposed that hcp‐NiFe possesses favorable electronic property to expedite the reaction on the NC surface, resulting higher catalytic activity for OER. This research provides a new insight to design more efficient electrocatalysts by considering the crystal phase correlated electronic property.  相似文献   

15.
In the present work, for the first time we have designed a novel approach for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles using reduced graphene oxide (rGO) decorated with Cu‐Ni bimetallic nanoparticles (NPs). In situ synthesis of Cu/Ni/rGO nanocomposite was performed by a cost efficient, surfactant‐free and environmentally benign method using Crataegus azarolus var. aronia L. leaf extract as a stabilizing and reducing agent. Phytochemicals present in the extract can be used to reduce Cu2+ and Ni2+ ions and GO to Cu NPs, Ni NPs and rGO, respectively. Analyses by means of FT‐IR, UV–Vis, EDS, TEM, FESEM, XRD and elemental mapping confirmed the Cu/Ni/rGO formation and also FT‐IR, NMR, and mass spectroscopy as well as elemental analysis were used to characterize the tetrazoles. The Cu/Ni/rGO nanocomposite showed the superior catalytic activity for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles within a short reaction time and high yields. Furthermore, this protocol eliminates the need to handle HN3.  相似文献   

16.
Uniform Ni3C nanodots dispersed in ultrathin N‐doped carbon nanosheets were successfully prepared by carburization of the two dimensional (2D) nickel cyanide coordination polymer precursors. The Ni3C based nanosheets have lateral length of about 200 nm and thickness of 10 nm. When doped with Fe, the Ni3C based nanosheets exhibited outstanding electrocatalytic properties for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). For example, 2 at % Fe (atomic percent) doped Ni3C nanosheets depict a low overpotential (292 mV) and a small Tafel slope (41.3 mV dec−1) for HER in KOH solution. An outstanding OER catalytic property is also achieved with a low overpotential of 275 mV and a small Tafel slope of 62 mV dec−1 in KOH solution. Such nanodot‐incorporated 2D hybrid structures can serve as an efficient bifunctional electrocatalyst for overall water splitting.  相似文献   

17.
NiFe alloy catalysts have received increasing attention due to their low cost, easy availability, and excellent oxygen evolution reaction (OER) catalytic activity. Although it is considered that the co-existence of Ni and Fe is essential for the high catalytic activity, the identification of active sites and the mechanism of OER in NiFe alloy catalysts have been controversial for a long time. This review focuses on the catalytic centers of NiFe alloys and the related mechanism in the alkaline water oxidation process from the perspective of crystal structure/composition modulation and structural design. Briefly, amorphous structures, metastable phases, heteroatom doping and in situ formation of oxyhydroxides are encouraged to optimize the chemical configurations of active sites toward intrinsically boosted OER kinetics. Furthermore, the construction of dual-metal single atoms, specific nanostructures, carbon material supports and composite structures are introduced to increase the abundance of active sites and promote mass transportation. Finally, a perspective on the future development of NiFe alloy electrocatalysts is offered. The overall aim of this review is to shed light on the exploration of novel electrocatalysts in the field of energy.

Effective strategies to increase the intrinsic activity by electronic modulation and to increase the number of active sites by structural design are discussed for improving the oxygen evolution activities of NiFe alloys.  相似文献   

18.
王豪杰  陈春  张海民  汪国忠  赵惠军 《催化学报》2018,39(10):1599-1607
生物质经催化转化合成燃料及化学品是当前研究的热点.目前,生物质的催化转化主要聚焦于纤维素、半纤维素和木质素的解聚及其下游产物合成.其中,乙酰丙酸(LA)作为纤维素解聚的主要产物之一,是一种极具竞争力的平台化合物和重要的生物质转化中间体.LA通过催化转化可以合成各类高附加值的化学品,例如,通过催化加氢LA可选择性合成γ-戊内酯(GVL).所合成的GVL用途广泛,可作为绿色溶剂、食品、燃料添加剂、(塑料、高分子、烃类或者其它高附加值化学品)前驱体等.目前,LA-to-GVL的研究主要着眼于非均相催化体系,包括负载型贵金属和非贵金属催化剂体.其中,贵金属催化剂主要有Ru,Au,Pd,Rh,Ir和Pt,虽然催化效率高,条件温和,但是成本高,难以实现工业化.此外对于广泛使用的Ru/C催化剂,存在金属-载体间相互作用不强.活性组分易流失、导致催化剂稳定性差等问题;而非贵金属则普遍存在催化活性不佳及反应条件苛刻等缺点.因此,开发高效、稳定、反应条件温和且具有工业化应用前景的非贵金属催化剂具有显著的研究意义,这也是当前的研究趋势.在特定温度下,金属离子与碳基底存在较强的相互作用.鉴于此,本文通过一步碳热还原法合成了活性炭负载的Ni3Fe双金属催化剂(Ni3Fe NPs@C).该催化剂在LA-to-GVL转化体系中展现了直接加氢(DH)和转移加氢(TH)双功能催化特性.首先,考察了其在DH体系中的反应特性:在130oC和2 MPa氢压反应条件下经2 h反应,LA转化率达到93.8%,GVL选择性为95.5%,GVL产率是相应的单金属Ni/C和Fe/C催化剂的6倍和40倍.此外,在TH催化反应体系中,在180oC,0.5 h和无外加氢源的反应条件下,以异丙醇为反应溶剂和供氢体,LA几乎完全转化为GVL,其反应效率同样相较于单金属Ni/C和Fe/C催化剂大幅度提高.所合成的Ni3Fe NPs@C双金属催化剂DH和TH催化性能优于绝大多数报道的LA加氢贵金属和非贵金属催化剂.而且,该催化剂具有良好的循环利用性能,经过四次循环,其结构和化学状态没有发生明显的改变,稳定性明显优于商业化的Ru/C催化剂.此外,通过系统分析其催化性能以及材料结构,明确了该催化剂在LA的DH和TH反应体系中的活性位点,并提出了可能的反应路径.该研究为其它类型的DH和TH反应体系以及生物质高效转化过程提供了新的催化剂设计思路.并且这种催化剂及其制备方法简单、绿色,易于工业化推广和应用.  相似文献   

19.
Bimetallic NiCo functional graphene (NiCo/rGO) was synthesized by a facile one‐pot method. During the coreduction process, the as‐synthesized ultrafine NiCo nanoparticles (NPs), with a typical size of 4–6 nm, were uniformly anchored onto the surface of reduced graphene oxide (rGO). The NiCo bimetal‐supported graphene was found to be more efficient than their single metals. Synergetic catalysis of NiCo NPs and rGO was confirmed, which can significantly improve the hydrogen‐storage properties of MgH2. The apparent activation energy (Ea) of the MgH2? NiCo/rGO sample decreases to 105 kJ mol?1, which is 40.7 % lower than that of pure MgH2. More importantly, the as‐prepared MgH2? NiCo/rGO sample can absorb 5.5 and 6.1 wt % hydrogen within 100 and 350 s, respectively, at 300 °C under 0.9 MPa H2 pressure. Further cyclic kinetics investigation indicates that MgH2? NiCo/rGO nanocomposites have excellent cycle stability.  相似文献   

20.
Efficient and reusable nanocatalysts fabricated via a facile assembly are highly desirable for the cost‐effective hydrogenation reduction. Inspired by a fishing process with a fishnet, multifunctional nanostructured catalysts are rationally designed to combine interesting features via the self‐redox assembly of Fe3O4‐Ag composites on reduced graphene oxide (rGO) (Fe3O4‐Ag/rGO). In detail, Fe3O4 nanoparticles (NPs) endow the ternary hybrids with superparamagnetism (21.42 emu g?1), facilitating catalysts to be separated from the reaction system. rGO could provide electron transfer pathways, enhancing catalytic activity. More interestingly, GO and Ag+ could behave as oxidants to oxidize Fe2+ for the in situ assembly of Fe3O4‐Ag/rGO without any addition of reductant/oxidant or organic solvents, and AgNPs endow the ternary hybrids with excellent catalytic behaviour. Meaningfully, the bioinspired process enables the ternary hybrids to possess more abundant micro?/nanopores, larger surface area, and more amorphization. They exhibit exceptional catalytic performance, and could be recycled with excellent activity by means of convenient magnetic separation (at least 7 times). Moreover, the ternary hybrids could degrade methylene blue under UV light due to different valence states of Fe in Fe3O4. Therefore, the proposed bioinspired assembly and structure design for hierarchical catalysts would pave a promising way to assemble other catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号