首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethylamine‐tris(pentafluoroethyl)borane (C2F5)3B · NHMe2 ( 1 ) has been obtained from C2F5I, Br2BNMe2 and tris(diethylamino)phosphane in sulfolane. Alkylation using CH3I/KOH yielded the trimethylamine‐tris(pentafluoroethyl)borane (C2F5)3B · NMe3 ( 2 ). Compound 2 reacts with NEt3×3HF at 200—204 °C under replacement of the trimethylamine ligand to form the novel fluoro‐tris(pentafluoroethyl)borate anion [(C2F5)3BF] ( 3 ) in good yield. Side products are the hydroxy‐tris(pentafluoroethyl)borate [(C2F5)3BOH] ( 4 ) and the hydrido‐tris(pentafluoroethyl)borate [(C2F5)3BH] ( 5 ).  相似文献   

2.
Trimethylamine‐tris(pentafluoroethyl)borane [(C2F5)3BNMe3] ( 1 ) reacts at 190 °C with water under displacement of the trimethylamine ligand to yield the hydroxy‐tris(pentafluoroethyl)borate [(C2F5)3BOH]? ( 2 ). In tributylamine 1 reacts with alkynes HC≡CR to form novel ethynyl‐tris(pentafluoroethyl)borate anions [(C2F5)3BC≡CR]? – R = C6H5 ( 3 ), C6H4CH3 ( 4 ), Si(CH(CH3)2)3 ( 5 ) – in moderate yields. Compound 3 adds water across the triple bond to form the novel anion [(C2F5)3BCH2(CO)C6H5]? ( 6 ). The structures of [(C2F5)3BNMe3], [NMe4][(C2F5)3BOH] and K[(C2F5)3BCH2(CO)C6H5] have been determined by x‐ray crystallography.  相似文献   

3.
Weakly coordinating anions (WCAs) are important for academic reasons as well as for technical applications. Tetrakis(pentafluoroethyl)gallate, [Ga(C2F5)4]?, a new WCA, is accessible by treatment of [GaCl3(dmap)] (dmap=4‐dimethylaminopyridine) with LiC2F5. The anion [Ga(C2F5)4]? proved to be reluctant towards deterioration by aqueous hydrochloric acid or lithium hydroxide. Various salts of [Ga(C2F5)4]? were synthesized with cations such as [PPh4]+, [CPh3]+, [(O2H5)2(OH2)2]2+, and [Li(dec)2]+ (dec=diethyl carbonate). Thermolysis of [(O2H5)2(OH2)2][Ga(C2F5)4]2 gives rise to a dihydrate of tris(pentafluoroethyl)gallane, [Ga(C2F5)3(OH2)2]. All products were characterized by NMR and IR spectroscopy, mass spectrometry, X‐ray diffraction, and elemental analysis. Furthermore, an outlook for the application of [Li(dec)2][Ga(C2F5)4] as a conducting salt in lithium‐ion batteries is presented.  相似文献   

4.
The tris(pentafluoroethyl)silanide anion is accessible by the deprotonation of Si(C2F5)3H at low temperatures. Subsequent quenching of the resulting salt‐like compounds with suitable electrophiles, such as transition‐metal complexes or Group 14 element halides, leads to a plethora of novel tris(pentafluoroethyl)silane derivatives. This underlines the versatility of Li[Si(C2F5)3] as a powerful nucleophilic transfer reagent.  相似文献   

5.
The research area of perfluoroalkylsilanes is still in its infancy. Although there are already many examples of difluorotriorganylsilicates, the first example of a completely characterized trifluorotriorganylsilicate is presented, the dianion [Si(C2F5)3F3]2?. The strongly electron‐withdrawing influence of the pentafluoroethyl groups appears to be a fundamental cause of the stability of this compound. This dianion is also the first structurally characterized example of a tris(pentafluoroethyl)silicon compound. The synthesis and complete characterization of [PPh4]2[Si(C2F5)3F3] and [PPh4][Si(C2F5)3F2] along with the precursor [H(OEt2)2][Si(C2F5)3F2] was achieved from SiCl4 and LiC2F5.  相似文献   

6.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

7.
Structure of Diaza-diphosphetidin, [(C6F5)F2P? NCH3]2 The synthesis, n. m. r. spectra and crystal structure of the diaza-diphosphetidin, [(C6F5)F2P? NCH3]2, are reported.  相似文献   

8.
Pentafluorophenyliodine(III) Compounds. 2. Fluorine-Aryl Substitution Reactions on Iodinetrifluoride: Synthesis of Pentafluorophenyliodinedifluoride C6F5IF2 and Bis(pentafluorophenyl)iodonium Pentafluorophenylfluoroborates[(C6F5)2I]+[(C6F5)nBF4?n]? Mono- and disubstitution can be achieved in the fluorine-aryl substitution reaction on the low-temperature phase IF3 in CH2Cl2 at ?78°C depending on the aryl transfer reagent. With B(C6F5)3 [(C6F5)2I]+ [(C6F5)nBF4?n]? (68% yield) and with Cd(C6F5)2 C6F5IF2 (97% yield) is obtained whereas with C6F5SiMe3 no fluorine-aryl substitution takes place on IF3 even under basic conditions (EtCN or F? addition). At ?78°C in EtCN solution IF3 does not disproportionate but attacks the solvent under formation of HF.  相似文献   

9.
Simple Trithio- and Perthiocarbonato Complexes with Interesting Bond Properties: [E(CS3)2]2? (E = Sn, Zn, Cd), [E(CS3)3]3? (E = As, Sb, Bi, Co), {Cu(CS3)?} and [Zn(CS4)2]2? By reactions of potassium trithiocarbonate ( 1 ) with solutions of zinc(II)- acetylacetonate, cadmium(II)-chloride, tin(II)-chloride, arsenic(III)-sulfide (suspension), antimony(III)-chloride, bismuth(III)-chloride and copper(II)-chloride in dimethyl sulfoxide, as well as of trisodium hexanitrito cobaltate(III) in water, and the precipitation of the complexes with an aqueous solution of tetraphenylphosphonium chloride the compounds (PPh4)2[Zn(CS3)2] ( 2 ), (PPh4)2[Cd(CS3)2] ( 3 ), (PPh4)2[Sn(CS3)2] ( 4 ), (PPh4)3[As(CS3)3] ( 5 ), (PPh4)3[Sb(CS3)3] ( 6 ), (PPh4)3[Bi(CS3)3] ( 7 ), (PPh4)3[Co(CS3)3] ( 8 ) and (PPh4)Cu(CS3) ( 9 ) have been isolated. (PPh4)2[Zn(CS4)2] · CH3NO2 ( 10 ) has been prepared by heating a solution of 2 in nitromethane to 60--70°C in presence of air. The reaction of 1 in dimethyl sulfoxide with an aqueous tetraphenylphosphonium chloride solution in presence of oxygen leads to (PPh4)2[C2S6] ( 11 ). The compounds have been characterized by spectroscopical studies (IR, Raman, UV/Vis, 113Cd/59Co-NMR), magnetic susceptibility measurements, powder diffractometry, elemental analyses and single crystal X-ray structure analysis ( 4 – 7 , 10 and 11 ). The difficult growing of single crystals has been reported in detail. For crystal data see Inhaltsübersicht.  相似文献   

10.
Syntheses and Properties of Pentafluoroethylcopper(I) and ‐copper(III) Compounds: CuC2F5 · D, [Cu(C2F5)2], and (C2F5)2CuSC(S)N(C2H5)2 The reactions of Cd(C2F5)2 · D and Zn(C2F5)2 · D (D = 2 CH3CN, 2 DMF), respectively, with copper(I) halides in the presence of halides quantitatively yield the CuC2F5 compounds CuC2F5 · D and [Cu(C2F5)2]. The CuC2F5 complexes are identified by NMR spectroscopy, while [Cu(C2F5)2] is isolated as PNP salt (PNP = (C6H5)3PNP(C6H5)3+). Both compounds are excellent C2F5 group transfer reagents, even at low temperature. Oxidation of [Cu(C2F5)2] with [(C2H5)2NC(S)S]2 yields the crystalline Cu(III) compound (C2F5)2CuSC(S)N(C2H5)2 (monoclinic, C2/c).  相似文献   

11.
[PPh4][EI4] (E=As, Sb, Bi) salts were reacted with four and five equivalents of AgN3 to form tetraazidopnictates and pentaazidopnictates of the type [PPh4][E(N3)4] and [PPh4]2[E(N3)5], respectively. The synthesis of [PPh4][P(N3)4] was also attempted from the reaction of P(N3)3 with [PPh4]N3, but it yielded only the starting materials. Herein, we report the synthesis and structure elucidation of [PPh4][E(N3)]4 (E=As, Sb) and pentaazidobismuthate, stabilized as the dimethyl sulfoxide (DMSO) anion adduct, [PPh4]2[Bi(N3)5(dmso)]. Successive anion formation along the series E(N3)3+nN3? (n=1–3) and E(N3)5+N3? was studied by density functional theory.  相似文献   

12.
As recently shown, the introduction of pentafluoroethyl functionalities into silicon compounds is of general interest due to an enhanced Lewis acidity of the resulting species. By this means, the synthesis of previously inaccessible hypervalent silicon derivatives is enabled. 1 While an easy access to tris(pentafluoroethyl)silanes has already been published, synthetic strategies for the selective preparation of bis derivatives are yet unknown. In this contribution, a convenient protocol for the synthesis of functional bis(pentafluoroethyl)silicon compounds is presented. These compounds represent precursors for the synthesis of pentafluoroethylated polysiloxanes. 2 Furthermore, they prove to be resistant to oxonium cations, which is a key feature for the preparation of stable pentafluoroethylsilic acids. 3 Treatment of dichlorodiphenoxysilane with in situ generated pentafluoroethyl lithium leads to the corresponding bis(pentafluoroethyl)silane in high yields. (C2F5)2Si(OPh)2 serves as a starting material for further functionalized bis(pentafluoroethyl)silanes. These silanes have been isolated and their reactivity towards N bases studied. The pronounced Lewis acidity of the obtained compounds has been documented by the formation of octahedral adducts with nitrogen donors such as 1,10‐phenanthroline and acetonitrile.  相似文献   

13.
Syntheses and Properties of Perfluoroorgano Esters of the Diethyldithiocarbamic Acid, (C2H5)2NC(S)SRf (Rf = CF3, C2F5, i‐C3F7, n‐C4F9, C6F5) Tetraethylthiuram disulfide reacts under different conditions with perfluoroorgano silver(I), AgRf, and perfluoroorgano cadmium compounds, Cd(Rf)2, to give the corresponding perfluoroorgano esters of diethyldithiocarbamic acid, (C2H5)2NC(S)SRf (Rf = CF3, C2F5, i‐C3F7, n‐C4F9, C6F5), and metal diethyldithiocarbamates, AgSC(S)N(C2H5)2 and Cd[SC(S)N(C2H5)2]2. The mechanisms of the reactions with AgRf and Cd(Rf)2 are discussed.  相似文献   

14.
Vanadium(V) oxoazide [VO(N3)3] was prepared through a fluoride–azide exchange reaction between [VOF3] and Me3SiN3 in acetonitrile solution. When the highly impact‐ and friction‐sensitive compound [VO(N3)3] was reacted with 2,2′‐bipyridine, the adduct [(bipy)VO(N3)3] was isolated. The reaction of [VO(N3)3] with [PPh4]N3 resulted in the formation and isolation of the salt [PPh4]2[VO(N3)5]. The adduct [(bipy)VO(N3)3] and the salt [PPh4]23[VO(N3)5] were characterized by vibrational spectroscopy and single‐crystal X‐ray structure determination, making these compounds the first structurally characterized vanadium(V) azides.  相似文献   

15.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

16.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

17.
The synthesis and complete characterization of functional, highly Lewis acidic tris(pentafluoroethyl)silanes as well as tetrakis(perfluoroalkyl)silanes Si(C2F5)4 and Si(C2F5)3CF3 by direct fluorination is described. The reaction of SiCl4 with LiC2F5 invariably affords (pentafluoroethyl)fluorosilicates. To avoid silicate formation by fluoride transfer from LiC2F5 the Lewis acidity of the silane has to be decreased by electron‐donating substituents, such as dialkylamino groups. The easily accessible Si(C2F5)3NEt2 is a valuable precursor for a series of tris(pentafluoroethyl)silanes.  相似文献   

18.
The carbodiphosphorane CO2 adduct O2CC(PPh3)2 ( 1a ) reacts with [(CO)5W(THF)] and [(CO)3W(NCEt)3] to produce the complexes [(CO)5W{η1‐O2CC(PPh3)2}] ( 2 ) and [(CO)4W{η2‐O2CC(PPh3)2}] ( 3 ), respectively. Whereas in 2 the betain‐like ligand is coordinated at the tungsten atom in a monodentate manner, in 3 it acts as a chelating ligand with formation of a WO2C four‐membered ring. As a by‐product during the reaction with the acetonitrile adduct also some crystals of the hydrolysis product [HC(PPh3)2]2[W6O19] · 3C2H4Cl2 (4 · 3C2H4Cl2) were isolated. All compounds could be characterized by X‐ray analyses and the usual spectroscopic methods.  相似文献   

19.
Preparation of [(C2H5)2NH2]3[PS3F]F and [(C2H5)2NH2]3 [PS2SeF]F and Crystal structure of the Phase with Selenium The title compounds were prepared by reaction of diethylammon ium-trithiophosphite with fluoride ions (as diethylammonium fluoride) and sulfur and selenium, respectively. The crystal structure of the selenium containing phase was determined. It does not represent a phosphoranate with a [PS2SeF2]3? anion, but a double salt of [PS2SeF]2? with F?.  相似文献   

20.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号