首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《化学:亚洲杂志》2017,12(2):239-247
Five bis(quinolylmethyl)‐(1H ‐indolylmethyl)amine (BQIA) compounds, that is, {(quinol‐8‐yl‐CH2)2NCH2(3‐Br‐1H ‐indol‐2‐yl)} ( L1H ) and {[(8‐R3‐quinol‐2‐yl)CH2]2NCH(R2)[3‐R1‐1H ‐indol‐2‐yl]} ( L2–5H ) ( L2H : R1=Br, R2=H, R3=H; L3H : R1=Br, R2=H, R3=i Pr; L4H : R1=H, R2=CH3, R3=i Pr; L5H : R1=H, R2=n Bu, R3=i Pr) were synthesized and used to prepare calcium complexes. The reactions of L1–5H with silylamido calcium precursors (Ca[N(SiMe2R)2]2(THF)2, R=Me or H) at room temperature gave heteroleptic products ( L1, 2 )CaN(SiMe3)2 ( 1 , 2 ), ( L3, 4 )CaN(SiHMe2)2 ( 3 a , 4 a ) and homoleptic complexes ( L3, 5 )2Ca ( D3 , D5 ). NMR and X‐ray analyses proved that these calcium complexes were stabilized through Ca⋅⋅⋅C−Si, Ca⋅⋅⋅H−Si or Ca⋅⋅⋅H−C agostic interactions. Unexpectedly, calcium complexes (( L3–5 )CaN(SiMe3)2) bearing more sterically encumbered ligands of the same type were extremely unstable and underwent C−N bond cleavage processes as a consequence of intramolecular C−H bond activation, leading to the exclusive formation of (E )‐1,2‐bis(8‐isopropylquinol‐2‐yl)ethane.  相似文献   

2.
The asymmetric functionalization of C?H bond is a particularly valuable approach for the production of enantioenriched chiral organic compounds. Chiral N‐heterocyclic carbene (NHC) ligands have become ubiquitous in enantioselective transition‐metal catalysis. Conversely, the use of chiral NHC ligands in metal‐catalyzed asymmetric C?H bond functionalization is still at an early stage. This minireview highlights all the developments and the new advances in this rapidly evolving research area.  相似文献   

3.
A previously elusive RuII‐catalyzed N?N bond‐based traceless C?H functionalization strategy is reported. An N‐amino (i.e., hydrazine) group is used for the directed C?H functionalization with either an alkyne or an alkene, affording an indole derivative or olefination product. The synthesis features a broad substrate scope, superior atom and step economy, as well as mild reaction conditions.  相似文献   

4.
5.
The ferrocene derivative (η5‐Cp)Fe{η5‐C5H3‐1‐(ArNCH)‐2‐(CH2NMe2)} ( 1 ; Ar=2,6‐iPr2C6H3)) reacts diastereoselectively with LiR by carbolithiation and subsequent hydrolysis to give (η5‐Cp)Fe{η5‐C5H3‐1‐(ArHNCHR)‐2‐(CH2NMe2)} ( 3 : R=tBu; 4 : R=Ph; 5 : R=Me) in high yields. For R=tBu, the organolithium derivative (η5‐Cp)Fe{η5‐C5H3‐1‐(ArLiNCHR)‐2‐(CH2NMe2)} ( 2 ) was isolated. Compound 2 reacts with GeCl2?dioxane and SnCl2 to give the metallylene amide chlorides (η5‐Cp)Fe{η5‐C5H3‐1‐(ArMNCHtBu)‐2‐(CH2NMe2)} 6 (M=GeCl) and 7 (M=SnCl), respectively, which each contain three stereogenic centers. The potential of 7 as a ligand in transition‐metal chemistry is demonstrated by formation of its complex (η5‐Cp)Fe{η5‐C5H3‐1‐(ArMNCHtBu)‐2‐(CH2NMe2)} [ 9 , M= Sn(Cl)W(CO)5]. Treatment of 3 with tert‐butyllithium at room temperature causes an unprecedented carbon–carbon bond cleavage whereas under kinetic control, lithiation at the Cp‐3 position takes place, which leads to the isolation of (η5‐Cp)Fe{η5‐C5H3‐1‐(ArHNCHtBu)‐2‐(CH2NMe2)‐3‐SiMe3} ( 10 ).  相似文献   

6.
PdII‐catalyzed C(sp3)?H arylation of saturated heterocycles with a wide range of aryl iodides is enabled by an N‐heterocyclic carbene (NHC) ligand. A C(sp3)?H insertion step by the PdII/NHC complex in the absence of ArI is demonstrated experimentally for the first time. Experimental data suggests that the previously established NHC‐mediated Pd0/PdII catalytic manifold does not operate in this reaction. This transformation provides a new approach for diversifying pharmaceutically relevant piperidine and tetrahydropyran ring systems.  相似文献   

7.
A novel radical‐based approach for the iron‐catalyzed selective cleavage of acetal‐derived alkylsilyl peroxides, followed by the formation of a carbon–carbon bond is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the acetal moiety and the carbon electrophile. Mechanistic studies suggest that the present reaction proceeds through a free‐radical process involving carbon radicals generated by the homolytic cleavage of a carbon–carbon bond within the acetal moiety. A synthetic application of this method to sugar‐derived alkylsilyl peroxides is also described.  相似文献   

8.
The dual function of the N?F bond as an effective oxidant and subsequent nitrogen source in intramolecular aliphatic C?H functionalization reactions is explored. Copper catalysis is demonstrated to exercise full regio‐ and chemoselectivity control, which opens new synthetic avenues to nitrogenated heterocycles with predictable ring sizes. For the first time, a uniform catalysis manifold has been identified for the construction of both pyrrolidine and piperidine cores. The individual steps of this new copper oxidation catalysis were elucidated by control experiments and computational studies, clarifying the singularity of the N?F function and characterizing the catalytic cycle to be based on a copper(I/II) manifold.  相似文献   

9.
A cyclometalated N‐heterocyclic carbene ligand in a half‐sandwich iron complex was found to couple with alkynes, leading to a unique type of ring opening of the carbene ligand and the formation of ferrocenyl–diimine complexes. An intermediary iron complex obtained from the reaction with phenylacetylene reveals that the ring opening follows the formation of a fused heterocycle consisting of an imidazole ring and two alkynes.  相似文献   

10.
Rhodium PCcarbeneP complexes 1‐L {L=PPh3, PPh2(C6F5)} react with isothiocyanate, carbodiimide and disulphide to enable C?S, C?N and S?S bond cleavage. The cleaved molecules are sequestered by the metal center and the pincer alkylidene linkage, forming η2‐coordinated sulfide or imide centered pincer complexes. When a C?S or S?S bond is cleaved, the resulting complexes can bridge two rhodium centers through sulphur forming dimeric complexes and eliminating a monodentate phosphine ligand.  相似文献   

11.
A novel method for the N?N bond cleavage of trimethylsilyl diazomethane is reported for the synthesis of terminal nitride complexes. The lithium salt of trimethylsilyl diazomethane was used to generate a rare terminal nitrilimine transition metal complex with partially occupied d‐orbitals. This iron complex 2 was characterized by CHN combustion analysis, 1H and 13C NMR spectroscopic analysis, single‐crystal X‐ray crystallography, SQUID magnetometry, 57Fe Mössbauer spectroscopy, and computational analysis. The combined results suggest a high‐spin d 6 (S=2) electronic configuration and an allenic structure of the nitrilimine ligand. Reduction of 2 results in release of the nitrilimine ligand and formation of the iron(I) complex 3 , which was characterized by CHN combustion analysis, 1H NMR spectroscopic analysis, and single‐crystal X‐ray crystallography. Treatment of 2 with fluoride salts quantitatively yields the diamagnetic FeIV nitride complex 4 , with concomitant formation of cyanide and trimethylsilyl fluoride through N?N bond cleavage.  相似文献   

12.
The N‐centered radical directed remote C?H bond functionalization via hydrogen‐atom‐transfer at distant sites has developed as an enormous potential tool for the organic synthetic chemists. Unactivated and remote secondary and tertiary, as well as selected primary C?H bonds, can be utilized for functionalization by following these methodologies. The synthesis of the heterocyclic scaffolds provides them extra attention for the modern days′ developments in this field of unactivated remote C?H bonds functionalizations.  相似文献   

13.
Unusual cleavage of P?C and C?H bonds of the P2N2 ligand, in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P‐tridentate coordination mode. The structures of both the heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P?C/C?H bond cleavage, which involves C?H bond cleavage, hydride rotation, Ni?C/P?H bond formation, and P?C bond cleavage.  相似文献   

14.
A redox‐neutral cobalt(III)‐catalyzed synthetic approach for the direct synthesis of unprotected indoles showcasing an N?N bond cleavage is reported. The herein newly introduced Boc‐protected hydrazines establish a beneficial addition to the limited portfolio of oxidizing directing groups for cobalt(III) catalysis. Moreover, the developed catalytic methodology tolerates a good variety of functional groups.  相似文献   

15.
A new class of cyclometalated AuIII complexes containing various bidentate C‐deprotonated C^N and cis‐chelating bis(N‐heterocyclic carbene) (bis‐NHC) ligands has been synthesized and characterized. These are the first examples of AuIII complexes supported by cis‐chelating bis‐NHC ligands. [Au(C^N)(bis‐NHC)] complexes display emission in solutions under degassed condition at room temperature with emission maxima (λmax) at 498–633 nm and emission quantum yields of up to 10.1 %. The emissions are assigned to triplet intraligand (IL) π→π* transitions of C^N ligands. The AuIII complex containing a C^N (C‐deprotonated naphthalene‐substituted quinoline) ligand with extended π‐conjugation exhibits prompt fluorescence and phosphorescence of comparable intensity with λmax at 454 and 611 nm respectively. With sulfonate‐functionalized bis‐NHC ligand, four water‐soluble luminescent AuIII complexes, including those displaying both fluorescence and phosphorescence, were prepared. They show similar photophysical properties in water when compared with their counterparts in acetonitrile. The long phosphorescence lifetime of the water‐soluble AuIII complex with C‐deprotonated naphthalene‐substituted quinoline ligand renders it to function as ratiometric sensor for oxygen. Inhibitory activity of one of these water‐soluble AuIII complexes towards deubiquitinase (DUB) UCHL3 has been investigated; this complex also displayed a significant inhibitory activity with IC50 value of 0.15 μM .  相似文献   

16.
《化学:亚洲杂志》2017,12(9):978-981
Although numerous reports exist on strained C−C bond cleavage reactions in aryl substitutions, the cleavage methodology for unstrained C−C bonds in alkylation reactions has not yet been established. We found that unstrained allylic C−C bonds can be cleaved using α‐radicals to form C(sp3)−C(sp3) bonds in the presence of a copper catalyst. In this reaction, the property of leaving and loading radicals is very important for radical fragmentations. In this paper, we investigated the effects of these properties in cleavage reactions for unstrained C−C bonds.  相似文献   

17.
We report the isolation and detailed structural characterization, by solid‐state and solution NMR spectroscopy, of the neutral mono‐ and bis‐NHC adducts of bis(catecholato)diboron (B2cat2). The bis‐NHC adduct undergoes thermally induced rearrangement, forming a six‐membered ‐B?C?N?C?C‐N‐heterocyclic ring via C?N bond cleavage and ring expansion of the NHC, whereas the mono‐NHC adduct is stable. Bis(neopentylglycolato)diboron (B2neop2) is much more reactive than B2cat2 giving a ring expanded product at room temperature, demonstrating that ring expansion of NHCs can be a very facile process with significant implications for their use in catalysis.  相似文献   

18.
A general strategy for the cleavage and amination of C?C bonds of cycloalkanols has been achieved through visible‐light‐induced photoredox catalysis utilizing a cerium(III) chloride complex. This operationally simple methodology has been successfully applied to a wide array of unstrained cyclic alcohols, and represents the first example of catalytic C?C bond cleavage and functionalization of unstrained secondary cycloalkanols.  相似文献   

19.
20.
A fluoride‐anion‐induced, regioselective ring expansion of benzocyclic ketones and α‐aryl cycloketones has been developed via insertion of arynes into unactivated benzylic C?C bonds. This reaction provides a straightforward, transition‐metal‐free avenue to prepare medium ring‐fused benzocarbocycles by creating “noble” seven‐, eight‐, and nine‐membered rings. Applications of this method in the creation of medium‐sized exocyclic and inner benzocyclic olefins, nine‐membered lactones, and lactams are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号