首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We designed, synthesized, and characterized a new Zr‐based metal–organic framework material, NU‐1100 , with a pore volume of 1.53 ccg?1 and Brunauer–Emmett–Teller (BET) surface area of 4020 m2g?1; to our knowledge, currently the highest published for Zr‐based MOFs. CH4/CO2/H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g?1, which corresponds to 43 g L?1. The volumetric and gravimetric methane‐storage capacities at 65 bar and 298 K are approximately 180 vSTP/v and 0.27 g g?1, respectively.  相似文献   

3.
Traditional films cannot fully adapt to industrial applications and to intensified processes. Advanced mixed‐matrix membranes comprising metal–organic frameworks (MOF) embedded in a polymer matrix have been developed with the goal of breaking the trade‐off effect of traditional polymer membranes and achieving separation performance beyond Robeson's upper limit. The key challenges in the fabrication of MOF‐based mixed‐matrix membranes are an enhancement in compatibility between the inorganic filler and the polymer matrix, elimination of the irregular morphology and non‐selective interfacial defects, and further improvement in the gas‐separation performance. This review summarizes the recent advances in protocols and strategies in terms of designing interfacial interactions to enhance the MOF/polymer interface compatibility. This review aims at providing some meaningful insights into preparing MOF‐based mixed‐matrix membranes targeting ideal interfacial morphology and leading to excellent gas‐separation performance.  相似文献   

4.
Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.  相似文献   

5.
6.
Metal‐organic frameworks (MOFs) have been applied in various fields because of their fascinating structures and excellent properties. MOFs can serve as stationary phases in gas chromatography (GC), which has led to exceptional improvements of performance. Here, we summarize the application of MOFs in GC based on the classification of analytes. The advantages and separation mechanism of MOFs as stationary phases in GC are discussed in combination with the characteristics and structures of MOFs. The limitations are also summarized in this review, which can provide prospects on further research for the applications of MOFs.  相似文献   

7.
8.
Defect‐free mixed‐matrix membranes (MMMs) were prepared by incorporating hydrophilic metal‐organic polyhedra (MOPs) into cross‐linked polyethylene oxide (XLPEO) for efficient CO2 separation. Hydrophilic MOPs with triethylene glycol pendant groups, which were assembled by 5‐tri(ethylene glycol) monomethyl ether isophthalic acid and CuII ions, were uniformly dispersed in XLPEO without particle agglomeration. Compared to conventional neat XLPEO, the homogenous dispersion of EG3‐MOPs in XLPEO enhanced CO2 permeability of MMMs. Upon increasing the amount of EG3‐MOPs, the membrane performance such as CO2/N2 selectivity was steadily improved because of unsaturated CuII sites at paddle‐wheel units, which was confirmed by Cu K‐edge XANES and TPD analysis. Therefore, such defect‐free MMMs with unsaturated metal sites would contribute to enhance CO2 separation performance.  相似文献   

9.
The water stable UiO‐66(Zr)‐(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10?3 S cm?1 at 90 °C and 95 % relative humidity. Quasi‐elastic neutron scattering measurements combined with aMS‐EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen‐bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton‐conduction mechanism at the molecular level in a highly conductive MOF.  相似文献   

10.
Simple and effective separation of isomeric organic molecules is an important but challenging task. Herein, we successfully developed a selective crystallization strategy to separate the mixtures of isomeric dicarboxylic acids (DCAs) for the first time. The target DCAs could be preferably combined with crystallization inducer of Zr4+ ions to form a pre‐designed metal‐organic frameworks (MOFs) crystal structure whereas the entry of non‐target isomeric DACs into the MOFs lattice could be exclusively inhibited. Several isomeric pairs were exemplified to verify the extensibility and validity of the developed strategy.  相似文献   

11.
Efficient separation of n‐butene (n‐C4H8) and iso‐butene (iso‐C4H8) is of significance for the upgrading of C4 olefins to high‐value end products but remains one of the major challenges in hydrocarbon purifications owing to their similar structures. Herein, we report a flexible metal‐organic framework, MnINA (INA=isonicotinate), featuring one‐dimensional pore channels with periodically large pocket‐like cavities connected by narrow bottlenecks, for the first time for efficient n‐/iso‐C4H8 separation. MnINA with smaller pore size (4.62 Å) compared with CuINA (4.84 Å), exhibits steep adsorption isotherms and high capacity of 1.79 mmol g?1 for n‐C4H8 (4.46 Å) through strong host‐guest interactions via C?H???π bonding. The narrow bottlenecks exert barriers for the large molecules of iso‐C4H8 (4.84 Å) within the gate‐opening pressure range of 0–0.1 bar. This gives rise to MnINA with excellent separation selectivity of 327.7 for n‐/iso‐C4H8 mixture. The adsorption mechanism for n‐C4H8 and the gate‐opening effect were investigated by dispersion‐corrected density functional (DFT‐D) theory, verifying the strong interactions between n‐C4H8 and the frameworks as well as the gate‐opening effect derived from the rotation of organic linkers. The breakthrough tests confirmed MnINA and CuINA can be promising candidates for n‐/iso‐C4H8 separation.  相似文献   

12.
Continuous and intergrown metal‐organic framework (MOF) membranes, MIL‐100(In) (MIL represents Materials Institute Lavoisier), were prepared directly on porous anodic alumina oxide (AAO) membranes using an in situ crystallization method. The pore surface of MIL‐100(In) is conferred with polarity due to the presence of the 1, 3,5‐benzenetricarboxylic acid. The thickness of MIL‐100(In) membranes was tuned by varying the reactant concentration of indium chloride and 1, 3,5‐benzenetricarboxylic acid. Single gas permeation measurements on this MOF membrane indicate the large permeances of 0.90 × 10–6 and 0.81 × 10–6 mol · m–2·s–1·Pa–1 for CO2 and CH4, and relatively high ideal selective factors of 3.75 and 3.38 for CO2/N2 and CH4/N2, respectively.  相似文献   

13.
14.
In this work, we have synthesized nanocomposites made up of a metal–organic framework (MOF) and conducting polymers by polymerization of specialty monomers such as pyrrole (Py) and 3,4‐ethylenedioxythiophene (EDOT) in the voids of a stable and biporous Zr‐based MOF ( UiO‐66 ). FTIR and Raman data confirmed the presence of polypyrrole ( PPy ) and poly3,4‐ethylenedioxythiophene ( PEDOT ) in UiO‐66‐PPy and UiO‐66‐PEDOT nanocomposites, respectively, and PXRD data revealed successful retention of the structure of the MOF. HRTEM images showed successful incorporation of polymer fibers inside the voids of the framework. Owing to the intrinsic biporosity of UiO‐66 , polymer chains were observed to selectively occupy only one of the voids. This resulted in a remarkable enhancement (million‐fold) of the electrical conductivity while the nanocomposites retain 60–70 % of the porosity of the original MOF. These semiconducting yet significantly porous MOF nanocomposite systems exhibited ultralow thermal conductivity. Enhanced electrical conductivity with lowered thermal conductivity could qualify such MOF nanocomposites for thermoelectric applications.  相似文献   

15.
16.
17.
A new metal‐organic framework (MOF) {[Cd2(bbib)2(ndc)2]?2DMF}n ( JXUST‐1 ) (bbib=1,3‐bis(benzimidazolyl)benzene, H2ndc=1,4‐naphthalenedicarboxylic acid, DMF=N,N‐dimethylformamide) has been solvothermally synthesized and characterized by single‐crystal X‐ray diffraction, PXRD, TGA, IR and elemental analysis. JXUST‐1 exhibits a three‐dimensional 6‐connected pcu topology with a Schläfli symbol {412.63} constructed by [Cd2(CO2)3] secondary building units. Fluorescence studies show that this MOF can sensitively and selectively recognize Al3+ via a fluorescence enhancement effect, and the detection limit is 0.048 ppm. Furthermore, JXUST‐1 displays relatively good thermal and chemical stabilities as well as reusability. All these results suggest JXUST‐1 to be a highly selective and recyclable luminescent sensing material for the detection of Al3+.  相似文献   

18.
Fluorocarbons have important applications in industry, but are environmentally unfriendly, and can cause ozone depletion and contribute to the global warming with long atmospheric lifetimes and high global warming potential. In this work, the metal–organic framework UiO‐66(Zr) is demonstrated to have excellent performance characteristics to separate fluorocarbon mixtures at room temperature. Adsorption isotherm measurements of UiO‐66(Zr) display high fluorocarbon sorption uptakes of 5.0 mmol g?1 for R22 (CHClF2), 4.6 mmol g?1 for R125 (CHF2CF3), and 2.9 mmol g?1 for R32 (CH2F2) at 298 K and 1 bar. Breakthrough data obtained for binary (R22/R32 and R32/R125) and ternary (R32/R125/R134a) mixtures reveal high selectivities and capacities of UiO‐66(Zr) for the separation and recycling of these fluorocarbon mixtures. Furthermore, the UiO‐66(Zr) saturated with R22 and R125 can be regenerated at temperatures as low as 120 °C with excellent desorption–adsorption cycling stabilities.  相似文献   

19.
Chiral ZIF‐8 hollow nanospheres with d ‐histidine as part of chiral ligands (denoted as H‐d ‐his‐ZIF‐8) were prepared for separation of (±)‐amine acids. Compared to bulk d ‐his‐ZIF‐8 without a hollow cavity, the prepared H‐d ‐his‐ZIF‐8 showed 15 times higher separation capacity and higher ee values of 90.5 % for alanine, 95.2 % for glutamic acid and 92.6 % for lysine, respectively.  相似文献   

20.
A nerve‐agent simulant based on a phosphate ester is hydrolyzed using a MOF‐based catalyst. Suspensions of MOF‐808 (6‐connected), a material featuring 6‐connected zirconium nodes, display the highest hydrolysis rates among all MOFs that have been reported to date. A plug‐flow reactor was also prepared with MOF‐808 (6‐connected) as the active layer. Deployed in a simple filtration scheme, the reactor displayed high hydrolysis efficiency and reusability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号