首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the edge and bulk conductances for 2D quantum Hall systems in which the Fermi energy falls in a band where bulk states are localized. We show that the resulting quantities are equal, when appropriately defined. An appropriate definition of the edge conductance may be obtained through a suitable time averaging procedure or by including a contribution from states in the localized band. In a further result on the Harper Hamiltonian, we show that this contribution is essential. In an appendix we establish quantized plateaus for the conductance of systems which need not be translation ergodic. An erratum to this article is available at .  相似文献   

2.
The topic of this contribution is the investigation of quantum states and quantum Hall effect in electron gas subjected to a periodic potential of the lateral lattice. The potential is formed by triangular quantum antidots located on the sites of the square lattice. In such a system the inversion center and the four-fold rotation symmetry are absent. The topological invariants which characterize different magnetic subbands and their Hall conductances are calculated. It is shown that the details of the antidot geometry are crucial for the Hall conductance quantization rule. The critical values of lattice parameters defining the shape of triangular antidots at which the Hall conductance is changed drastically are determined. We demonstrate that the quantum states and Hall conductance quantization law for the triangular antidot lattice differ from the case of the square lattice with cylindrical antidots. As an example, the Hall conductances of magnetic subbands for different antidot geometries are calculated for the case when the number of magnetic flux quanta per unit cell is equal to three.  相似文献   

3.
 The integral quantum Hall effect can be explained either as resulting from bulk or edge currents (or, as it occurs in real samples, as a combination of both). This leads to different definitions of Hall conductance, which agree under appropriate hypotheses, as shown by Schulz-Baldes et al. by means of K-theory. We propose an alternative proof based on a generalization of the index of a pair of projections to more general operators. The equality of conductances is an expression of the stability of that index as a flux tube is moved from within the bulk across the boundary of a sample. Received: 11 March 2002 / Accepted: 1 April 2002 Published online: 12 August 2002  相似文献   

4.
Spin–orbit coupling changes graphene, in principle, into a two-dimensional topological insulator, also known as quantum spin Hall insulator. One of the expected consequences is the existence of spin-filtered edge states that carry dissipationless spin currents and undergo no backscattering in the presence of non-magnetic disorder, leading to quantization of conductance. Whereas, due to the small size of spin–orbit coupling in graphene, the experimental observation of these remarkable predictions is unlikely, the theoretical understanding of these spin-filtered states is shedding light on the electronic properties of edge states in other two-dimensional quantum spin Hall insulators. Here we review the effect of a variety of perturbations, like curvature, disorder, edge reconstruction, edge crystallographic orientation, and Coulomb interactions on the electronic properties of these spin filtered states.  相似文献   

5.
Spontaneous edge currents are known to occur in systems of two space dimensions in a strong magnetic field. The latter creates chirality and determines the direction of the currents. Here we show that an analogous effect occurs in a field-free situation when time reversal symmetry is broken by the mass term of the Dirac equation in two space dimensions. On a half plane, one sees explicitly that the strength of the edge current is proportional to the difference between the chemical potentials at the edge and in the bulk, so that the effect is analogous to the Hall effect, but with an internal potential. The edge conductivity differs from the bulk (Hall) conductivity on the whole plane. This results from the dependence of the edge conductivity on the choice of a selfadjoint extension of the Dirac Hamiltonian. The invariance of the edge conductivity with respect to small perturbations is studied in this example by topological techniques Mathematics Subject Classification (2000). 81Q10, 58J32  相似文献   

6.
We present a semi-analytic method to study the electronic conductance of a lengthy armchair honeycomb nanoribbon in the presence of vacancies, defects, or impurities located at a small part of it. For this purpose, we employ the Green's function technique within the nearest neighbor tight-binding approach. We first convert the Hamiltonian of an ideal semiinfinite nanoribbon to the Hamiltonian of some independent polyacetylene-like chains. Then, we derive an exact formula for the self-energy of the perturbed part due to the existence of ideal parts. The method gives a fully analytical formalism for some cases such as an infinite ideal nanoribbon and the one including linear symmetric defects. We calculate the transmission coefficient for some different configurations of a nanoribbon with special width including a vacancy, edge geometrical defects, and two electrical impurities.  相似文献   

7.
We report a thorough theoretical investigation on the quantum transport of a disordered four terminal device in the presence of Rashba spin orbit coupling (RSOC) in two dimensions. Specifically we compute the behaviour of the longitudinal (charge) conductance, spin Hall conductance and spin Hall conductance fluctuation as a function of the strength of disorder and Rashba spin orbit interaction using the Landauer Büttiker formalism via Green’s function technique. Our numerical calculations reveal that both the conductances diminish with disorder. At smaller values of the RSOC parameter, the longitudinal and spin Hall conductances increase, while both vanish in the strong RSOC limit. The spin current is more drastically affected by both disorder and RSOC than its charge counterpart. The spin Hall conductance fluctuation does not show any universality in terms of its value and it depends on both disorder as well as on the RSOC strength. Thus the spin Hall conductance fluctuation has a distinct character compared to the fluctuation in the longitudinal conductance. Further one parameter scaling theory is studied to assess the transition to a metallic regime as claimed in literature and we find no confirmation about the emergence of a metallic state induced by RSOC.  相似文献   

8.
We study the dynamics of edge states of the two dimensional BHZ Hamiltonian in a ribbon geometry following a sudden quench to the quantum critical point separating the topological insulator phase from the trivial insulator phase. The effective edge state Hamiltonian is a collection of decoupled qubit-like two-level systems which get coupled to bulk states following the quench. We notice a pronounced collapse and revival of the Lochschmidt echo for low-energy edge states illustrating the oscillation of the state between the two edges. We also observe a similar collapse and revival in the spin Hall current carried by these edge states, leading to a persistence of its time-averaged value.  相似文献   

9.
We investigate theoretically the spin-dependent electron transport in a Rashba quantum wire with rough edges. The charge and spin conductances are calculated as function of the electron energy and wire length by adopting the spin-resolved lattice Green function method. For a single disordered Rashba wire, it is found that the charge conductance quantization is destroyed by the edge disorder. However, a nonzero spin conductance can be generated and its amplitude can be manipulated by varying the wire length, which is attributed to the broken structure symmetries and the spin-dependent quantum interference induced by the rough boundaries. For a large ensemble of disordered Rashba wires, the average charge conductance decreases monotonically, however, the average spin conductance increases to a maximum value and then decreases, with increasing wire length. Further study shows that the influence of the rough edges on the charge and spin conductances can be eliminated by applying a perpendicular magnetic field to the wire. In addition, a very large magnitude of the spin conductance can be achieved when the electron energy lies between the two thresholds of each pair of subbands. These findings may not only benefit to further apprehend the transport properties of the Rashba low-dimensional systems but also provide some theoretical instructions to the application of spintronics devices.  相似文献   

10.
We study the electronic edge states of graphene in the quantum Hall regime. For non-interacting electrons, graphene supports both electron-like and hole-like edge states. We find there are half as many edge states of each type in the lowest Landau level compared to higher Landau levels, leading to a quantization of the Hall conductance that is shifted relative to standard two dimensional electron gases. We also consider the effect of quantum Hall ferromagnetism on this edge structure, and find an unusual Luttinger liquid at the edge in undoped graphene. This arises due to a domain wall that forms near the edge between partially spin-polarized and valley-polarized regions. The domain wall has a U(1) degree of freedom which generates both collective and charged gapless excitations, whose consequences for tunneling experiments are discussed.  相似文献   

11.
Quantum states and Hall conductances of electrons in n-type heterojunctions and holes in p-type heterojunctions in a field of a lateral superlattice and a perpendicular magnetic field were studied. It is shown that the energy spectrum of magnetic subbands in a periodic potential without inversion center is not symmetric about the reversal of the quasi-momentum sign. The properties of wave functions and the related topological invariants determining the Hall conductance were examined. The method of calculating the magnetic Bloch states of holes was developed on the basis of the Luttinger Hamiltonian, allowing the spin and spin-orbit interactions to be taken into account in this problem. The Hall conductance quantization law was determined for 2D holes in a periodic superlattice potential.  相似文献   

12.
Quantum spin Hall effect in graphene   总被引:1,自引:0,他引:1  
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.  相似文献   

13.
We report on transport measurements of the insulating state that forms at the charge neutrality point of graphene in a magnetic field. Using both conventional two-terminal measurements, sensitive to bulk and edge conductance, and Corbino measurements, sensitive only to the bulk conductance, we observed a vanishing conductance with increasing magnetic fields. By examining the resistance changes of this insulating state with varying perpendicular and in-plane fields, we probe the spin-active components of the excitations in total fields of up to 45?T. Our results indicate that the ν=0 quantum Hall state in single layer graphene is not spin-polarized.  相似文献   

14.
We review the recent experimental progress towards observing quantum spin Hall effect in inverted InAs/GaSb quantum wells (QWs). Low temperature transport measurements in the hybridization gap show bulk conductivity of a non-trivial origin, while the length and width dependence of conductance in this regime show strong evidence for the existence of helical edge modes proposed by Liu et al. [Phys. Rev. Lett., 2008, 100: 236601]. Surprisingly, edge modes persist in spite of comparable bulk conduction and show only weak dependence on magnetic field. We elucidate that seeming independence of edge on bulk transport comes due to the disparity in Fermi-wave vectors between the bulk and the edge, leading to a total internal reflection of the edge modes.  相似文献   

15.
《Nuclear Physics B》2002,636(3):568-582
Chiral conformal field theories are characterized by a ground-state current at finite temperature, that could be observed, e.g., in the edge excitations of the quantum Hall effect. We show that the corresponding thermal conductance is directly proportional to the gravitational anomaly of the conformal theory, upon extending the well-known relation between specific heat and conformal anomaly. The thermal current could signal the elusive neutral edge modes that are expected in the hierarchical Hall states. We then compute the thermal conductance for the Abelian multi-component theory and the W1+∞ minimal model, two conformal theories that are good candidates for describing the hierarchical states. Their conductances agree to leading order but differ in the first, universal finite-size correction, that could be used as a selective experimental signature.  相似文献   

16.
For the numerical simulation of the fractional quantum Hall(FQH) effects on a finite disk, the rotational symmetry is the only symmetry that is used in diagonalizing the Hamiltonian. In this work, we propose a method of using the weak translational symmetry for the center of mass of the many-body system. With this approach, the bulk properties, such as the energy gap and the magneto-roton excitation are consistent with those in the closed manifolds like the sphere and torus. As an application, we consider the FQH phase and its phase transition in the fast rotated dipolar fermions. We thus demonstrate the disk geometry having versatility in analyzing the bulk properties beside the usual edge physics.  相似文献   

17.
We study both the continuous model and the discrete model of the quantum Hall effect (QHE) on the hyperbolic plane in the presence of disorder, extending the results of an earlier paper. Here we model impurities, that is we consider the effect of a random or almost periodic potential as opposed to just periodic potentials. The Hall conductance is identified as a geometric invariant associated to an algebra of observables, which has plateaus at gaps in extended states of the Hamiltonian. We use the Fredholm modules defined in Comm. Math. Phys. 190 (1998), 629–673, to prove the integrality of the Hall conductance in this case. We also prove that there are always only a finite number of gaps in extended states of any random discrete Hamiltonian.  相似文献   

18.
We consider effects of a long-wavelength disorder potential on the zero conductance state (ZCS) of the microwave-irradiated 2D electron gas. Assuming a uniform Hall conductivity, we construct a Lyapunov functional and derive stability conditions on the domain structure of the photogenerated fields. We solve the resulting equations for a general one-dimensional and certain two-dimensional disorder potentials, and find nonzero conductances, photovoltages, and circulating dissipative currents. In contrast, weak white-noise disorder does not destroy the ZCS, but induces mesoscopic current fluctuations.  相似文献   

19.
The role of bulk and edge currents in a two-dimensional electron gas under the conditions of the integer quantum Hall effect (IQHE) was studied by means of an inductive coupling to Hall bar geometry. From this study we conclude that the extended states at the bulk of the sample below the Fermi energy are capable of carrying a substantial amount of Hall current. For Hall bar geometry sample with a back gate we demonstrated that injected current can be pushed from one edge to another by reversing the direction of the external magnetic field.  相似文献   

20.
In this work, we study the effects of disorder on topological metals that support a pair of helical edge modes deeply embedded inside the gapless bulk states. Strikingly, we predict that a quantum spin Hall(QSH) phase can be obtained from such topological metals without opening a global band gap. To be specific, disorder can lead to a pair of robust helical edge states which is protected by an emergent Z_2 topological invariant, giving rise to a quantized conductance plateau in transport measurements. These results are instructive for solving puzzles in various transport experiments on QSH materials that are intrinsically metallic. This work also will inspire experimental realization of the QSH effect in disordered topological metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号