首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work is to provide an in-depth interpretation of the optical and electronic properties of a series of phosphole derivatives, including 2,5-diphenylthiooxophosphole (2a), 2-phenyl-5-biphenylthiooxophosphole (3a), 2-phenyl-5-stilbenylthiooxophosphole (4a), 2,5-dithienylthiooxophosphole (2b), 2-thienyl-5-biphenylthiooxophosphole (3b), 2-thienyl-5-stilbenylthiooxophosphole (4b), and dibenzophosphole 1. These thiooxophospholes show great potential for application in OLEDs as efficient red emitters due to the tuning of the optical and electronic properties by the use of various substituents at the 2,5-positions of the phosphole ring. The geometric and electronic structures of the oligomers in the ground state were investigated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited states were optimized with ab initio CIS. To assign the absorption and emission peaks observed in the experiment, we computed the energies of the lowest singlet excited states with time-dependent DFT (TD-DFT). All DFT calculations were performed using the B3LYP functional and the 6-31G (d) basis set. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials, and electron affinities for the phosphole derivatives are significantly affected by varying the phosphole ring substituents at the 2,5-positions, which favor the hole and electron injection into OLEDs. The absorption and emission spectra exhibit red shifts to some extent [the absorption spectra: 339.63 (1)<358.65 (2a)<373.77 (3a)<443.89 nm (4a) and 403.03 (3b)<449.11 (2b)<460.19 nm (4b); the emission spectra: 418.42 (1)<513.62 (2a)<556.51 (3a)<642.59 nm (4a) and 568.31 (2b)<631.11 (3b)<647.35 nm (4b)] and the Stokes shifts are unexpectedly large ranging from 78 to 228 nm resulting from a more planar conformation of the excited state for the phosphole derivatives.  相似文献   

2.
Phosphorescent mono-cyclometalated gold(III) complexes and their possible applications in organic light emitting diodes (OLEDs) can be significantly enhanced with their improved thermal stability by suppressing the reductive elimination of the respective ancillary ligands. A rational tuning of the π-conjugation of the cyclometalating ligand in conjunction with the non-conjugated 5,5′-(1-methylethylidene)bis(3-trifluoromethyl)-1H-pyrazole were used as a strategy to achieve room-temperature phosphorescence emission in a new series of gold(III) complexes. Photophysical studies of the newly synthesised and characterised complexes revealed phosphorescent emission of the complexes at room temperature in solution, thin films when doped in poly(methyl methacrylate) (PMMA) as well as in 2-Me-THF at 77 K. The complexes exhibit highly tuneable emission behaviour with photoluminescent quantum efficiencies up to 22 % and excited state lifetimes in the range of 63–300 μs. Detailed photophysical investigations in combination with DFT and TD-DFT calculations support the conclusion that the emission properties are strongly dictated by both the cyclometalating ligand and the ancillary chelating ligand. Thermogravimetric studies further show that the thermal stability of the AuIII complexes has been drastically enhanced, making these complexes more attractive for OLED applications.  相似文献   

3.
A new class of fused heterocyclic tridentate ligand‐containing alkynylgold(III) complexes with tunable emission color has been successfully designed and synthesized. Structural modification of the σ‐donating fused heterocyclic alkynyl ligands, including substituted fluorene, carbazole, and triphenylamine, enables a large spectral shift of about 110 nm (ca. 3310 cm?1) that covers the green to red region to be realized with the same tridentate ligand‐containing alkynylgold(III) complexes in solid‐state thin films. Interestingly, the energy of the excimeric emission can be controlled by the rational design of the fused heterocyclic alkynyl ligands. Superior solution‐processable organic light‐emitting devices (OLEDs) with high external quantum efficiencies (EQEs) of 12.2, 13.5, 9.3, and 5.2 % were obtained with green, yellow, orange, and red emission. These high EQE values are comparable to those of the vacuum‐deposited OLEDs based on structurally related alkynylgold(III) complexes.  相似文献   

4.
《化学:亚洲杂志》2017,12(17):2299-2303
Aromatic difluoroboronated β‐diketone ( BF2DK ) derivatives are a widely known class of luminescent organic materials that exhibit high photoluminescent quantum efficiency and unique aggregation‐dependent fluorescence behavior. However, there have been only a few reports on their use in solid‐state electronic devices, such as organic light‐emitting devices (OLEDs). Herein, we investigated the solid‐state properties and OLED performance of a series of π‐extended BF2DK derivatives that have previously been shown to exhibit intense fluorescence in the solution state. The BF2DK derivatives formed exciplexes with a carbazole derivative and exhibited thermally activated delayed fluorescence (TADF) behavior to give orange electroluminescence with a peak external quantum efficiency of 10 % that apparently exceeds the theoretical efficiency limit of conventional fluorescent OLEDs (7.5 %), assuming a light out‐coupling factor of 30 %.  相似文献   

5.
The synthesis, excited‐state dynamics, and applications of two series of air‐stable luminescent tungsten(VI) complexes are described. These tungsten(VI) complexes show phosphorescence in the solid state and in solutions with emission quantum yields up to 22 % in thin film (5 % in mCP) at room temperature. Complex 2 c , containing a 5,7‐diphenyl‐8‐hydroxyquinolinate ligand, displays prompt fluorescence (blue–green) and phosphorescence (red) of comparable intensity, which could be used for ratiometric luminescent sensing. Solution‐processed organic light‐emitting diodes (OLEDs) based on 1 d showed a stable yellow emission with an external quantum efficiency (EQE) and luminance up to 4.79 % and 1400 cd m−2 respectively. These tungsten(VI) complexes were also applied in light‐induced aerobic oxidation reactions.  相似文献   

6.
Two examples of a rare class of di‐radical azo‐anion complexes of 2‐(arylazo) pyridine with IrIII carrier are introduced. Their electronic structures have been elucidated using a host of physical methods that include X‐ray crystallography, cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory. Room temperature magnetic moments of these are consistent with two nearly non‐interacting azo‐anion radicals. These displayed rich electrochemical properties consisting of six numbers of reversible and successive one electron CV‐waves. Redox processes occur entirely at the coordinated ligands without affecting metal redox state. Apart from reporting their chemical characterization, IV characteristics of these complexes in film state are investigated using sandwich‐type devices comprising of a thin film of 100–125 nm thickness placed between two gold‐plated ITO electrodes. These showed memory switching properties covering a useful voltage range with a reasonable ON/OFF ratio and also are suitable for RAM/ROM applications. IV characteristics of two similar complexes of Rh and Cr with identical ligand environment and electronic structure are also referred for developing an insight into the memory switching ability of Ir‐ and Rh‐ complexes on the basis of comparative analysis of responses of the respective systems. In a nutshell, thorough analysis of voltage driven redox dynamics and corresponding solid and solution state current responses of all the systems are attempted and there from an unexplored class of switching devices are systematically introduced.  相似文献   

7.
Highly efficient sky-blue luminescent gold(III) complexes with emission quantum yields up to 82 %, lifetimes down to 0.67 μs and emission peak maxima at 470–484 nm were prepared through a consideration of pincer gold(III) donor–acceptor complexes. Photophysical studies and time-dependent density functional theory (TDDFT) calculations revealed that the emission nature of these gold(III) complexes is most consistent with TADF. Solution-processed OLEDs with these gold(III) complexes as dopants afforded electroluminescence maxima at 465–473 nm with FWHM of 64–67 nm and maximum external quantum efficiencies (EQEs) of up to 15.25 %. This research demonstrates the first example of gold(III)-OLEDs showing electroluminescence maxima at smaller than 470 nm, and highlights the potential of using gold(III)-TADF emitters in the development of high efficiency blue OLEDs and blue emissive dopant in WOLEDs.  相似文献   

8.
1,1-Bis(2'-thienyl)-2,3,4,5-tetraphenylsilole (1) was prepared and characterized crystallographically. Silole 1 exhibited aggregation-induced emission (AIE) behavior like other 2,3,4,5-tetraphenylsiloles. Unexpectedly, aggregates formed in water/acetone (6:4 by volume) mixture emitted a blue light that peaked at 474 nm, while aggregates formed in the mixtures with higher water fractions emitted green light that peaked at 500 nm. Transmission electron microscopy demonstrated that the aggregates formed in the mixture with water fraction of 60% were single crystals, while aggregates that formed in the mixture with water fraction of 90% were irregular and poorly ordered particles. The unusual PL spectral reliance on aggregation order was further confirmed by PL emissions of macroscopic crystal powders and amorphous powders of the silole in the dry state. PL spectral blue shifting was observed upon aging of the poorly ordered aggregates formed in mixtures with water fractions of 70-90%, and they finally exhibited the same blue emission as the crystalline aggregates. The as-deposited thin solid film was amorphous and it could be transformed to a transparent crystalline film upon treatment in the vapor of an ethanol/water (1:1 by volume) mixture, along with PL spectral blue shifting due to changing of aggregation order. It was also found that the crystalline film showed a blue-shifted absorption spectrum relative to the amorphous film and the shift of the absorption edge of the spectra could match that of corresponding PL spectra. The FT-IR spectrum of crystal powders of 1 displayed more vibration modes compared with that of amorphous powders, suggesting the existence of different pi-overlaps or different molecular conformations. The crystals of 1-methyl-1,2,3,4,5-pentaphenylsilole and hexaphenylsilole also showed blue-shifted PL emissions of their amorphous solids, with a comparable PL spectral shift of 1. Developing of a silole solution on a TLC plate readily brought about an amorphous thin layer. Our results suggest that crystalline films of AIE-active siloles are potential emissive layers for efficient blue OLEDs with stable color and long lifetime.  相似文献   

9.
A series of perfluorophenyl‐substituted dithienophosphole derivates has been synthesized. Investigation of their photophysical properties, as well as their organization in the solid state reveals that these properties can be manipulated via introduction of bromine substituents in 2,6‐position of the dithienphosphole scaffold, as well as the complexation of the phosphorus center with an electron rich gold(I) fragment. The strongly electron‐withdrawing character of the perfluorophenyl‐group surmounts the effect of the oxidation of the phosphorus center with respect to photophysics, leading to leading to optoelectronic features similar to those of the trivalent phosphole species. The trivalent phosphole species. The solid‐state organization of the members of this perfluorinated dithienophosphole family, on the other hand, strongly depends on the heteroatoms present within the system, as close intermolecular interactions can be observed between varieties of different atoms (Au‐Au, Br‐Br, Br‐O, Br‐C, F‐C, O‐S), next to regular C‐C π‐stacking interactions.  相似文献   

10.
Aza[n]helicene phosphole derivatives have been prepared from aza[n]helicene diynes by the Fagan–Nugent route. Their photophysical properties (UV/Vis absorption and emission behavior) have been evaluated. Their behavior as P,N chelates towards coordination to PdII and CuI has been investigated: metal–bis(aza[n]helicene phosphole) assemblies are formed by a highly stereoselective coordination process, as demonstrated by X‐ray crystallography. An aza[6]helicene phosphole bearing an enantiopure helicene part has been obtained, which allows the preparation of enantiopure PdII and CuI complexes with original topologies and high molar rotation (MR) and circular dichroism (CD). The structure–property relationship established from the experimental data has been studied in detail by theoretical studies (TDDFT calculations of UV/Vis, CD, and MR). Aza[n]helicene phosphole derivatives show π conjugation extended over the entire molecule, and its influence on the MR of aza[6]helicene phosphole 5 c has been demonstrated. Finally, it has been shown that the nature of the metal (coordination geometry and electronic interaction) can have a great impact on the amplitude of the chiroptical properties in metal–bis(aza[n]helicene phosphole) assemblies.  相似文献   

11.
A series of dinuclear diphosphine complexes of gold(I) alkynyls containing bis(diphenylphosphanyl)ethane/propane and alkynyl ligands with aromatic substituents (biphenyl, pyrene, and azobenzene) was synthesized and characterized using X‐ray crystallography and NMR spectroscopy. Photophysical parameters of the compounds obtained strongly depend on the nature of aromatic substituents in the alkynyl ligands. Azobenzene containing derivatives are non‐luminescent, whereas biphenyl and pyrene containing complexes display moderate emission both in solution and in solid state. The complexes with biphenyl substituents display strong heavy atom effect and show typical phosphorescent emission. In contrast, the complexes containing pyrene chromophore are fluorescent that points to the absence of spin orbit coupling in these systems, which additionally display static excimer emission in solid phase due to ground state π‐stacking of the pyrene moieties.  相似文献   

12.
Monometallic gold(I)‐alkynyl‐helicene complexes ( 1 a , b ) and bimetallic gold(I)‐alkynyl‐helicene architectures featuring the presence ( 2 a , b ) or absence ( 3 a , b ) of aurophilic intramolecular interactions were prepared by using different types of phosphole ligands (mono‐phosphole L1 or bis‐phospholes L2 , 3 ). The influence of the AuI d10 metal center(s) on the electronic, photophysical, and chiroptical properties of these unprecedented phosphole‐gold(I)‐alkynyl‐helicene complexes was examined. Experimental and theoretical results highlight the importance of ligand‐to‐ligand‐type charge transfers and the strong effect of the presence or absence of AuI–AuI interactions in 2 a , b .  相似文献   

13.
Four different 1,8-naphthalimide derivatives were examined in phosphorescent organic light emitting diodes (OLEDs), i.e., 1,8-naphthalimide, N-phenyl-1,8-naphthalimide, N-2,6-dibromophenyl-1,8-naphthalimide (niBr), and bis-N,N-1,8-naphthalimide. Photoluminescence from all four naphthalimides have violet-blue fluorescence and phosphorescent bands between 550 and 650 nm (visible at 77 K). While all four compounds gave good glassy films when doped with a phosphorescent dopant, only the niBr films remained glassy for extended periods. OLED studies focused on niBr, with two different architectures. One OLED structure (type 1) had the niBr layer as a doped luminescent layer and an undoped niBr layer to act as a hole-blocking layer. The alternate structure (type 2) utilizes a doped CBP layer as the luminescent layer and the niBr layer is used as a hole-blocking layer only (CBP = 4,4'-N,N'-dicarbazolylbiphenyl). Type 1 and 2 OLEDs were prepared with green, yellow, and red emissive phosphorescent dopants (Irppy, btIr, and btpIr, respectively). The dopants were organometallic Ir complexes, previously shown to give highly efficient OLEDs. Of the three dopants, the btpIr-based OLEDs showed the best device performance in both structures (peak efficiencies for type 2: 3.2% and 2.3 lum/W at 6.3 V; type 1: 1.7% and 1.3 lm/W at 6.1 V). The green and yellow dopants gave very similar performance in both type 1 and 2 devices (peak efficiencies are 0.2-0.3%), which were significantly poorer than the btpIr-based OLEDs. The emission spectrum of the btIr- and btpIr-based devices (type 1 and 2) are the same as the solution photoluminescence spectrum of the dopant alone, while the Irppy device gives a broad red emission line (lambda(max) = 640 nm). The red Irppy.niBr emission line is assigned to an Irppy.niBr exciplex. The type 2 Irppy-based device gave a voltage-dependent spectrum, with the red emission observed at low bias (4-8 V), switching over to strong green emission as the bias was raised. All other devices showed bias-independent spectra. Estimates of HOMO, LUMO, and excited-state energies (dopant, niBr, and exciplex) were used to explain the observed spectral properties of these devices. btpIr-based devices emit efficiently from isolated dopant states (external efficiencies = 3.2 %, 2.3 lum/W). Irppy-based devices emit only from exciplex states, with low efficiency (external efficiency = 0.3%). btIr.niBr films have very similar energies for the dopant, exciplex, and niBr triplet states, such that relaxation can go through any of these states, leading to low device efficiency (external efficiency = 0.4%). High device efficiency is achieved only when dopant emission is the dominant pathway for relaxation, since exciplex and niBr triplet states give either weak or no electroluminescence.  相似文献   

14.
Due to the difficulty in achieving high efficiency and high color purity simultaneously, blue emission is the limiting factor for the performance and stability of OLEDs. Since 2003, we have been working on organic light‐emitting diodes (OLEDs), especially on blue light. After a series of molecular designs, novel strategies have been proposed from different aspects. At first, highly efficient deep blue emission could be achieved through molecular design with highly twisted structure to suppress fluorescence quenching and redshift. Deep blue emitters with high efficiency in solid state, a twisted structure with aggregation induced emission (AIE) characteristics was incorporated to inhibit molecular aggregation, and triplet‐triplet fusion (TTF) and hybridized localized charge transfer (HLCT) were adopted to increase the ratio of triplet exciton used. Secondly, a highly efficient blue OLED could be achieved through improving charge transport. New electron transport materials (ETMs) with wide band gap were developed to control charge transport balance in devices. Thirdly, a highly efficient deep blue emission could be achieved through a mesoscopic structure of out‐coupling layer. A mesoscopic photonic structured organic thin film was fabricated on the top of metal electrode by self‐aggregation in order to improve the light out‐coupling efficiency.  相似文献   

15.
Five square-planar [Pt(C^N*N′^C′)] complexes ( Pt1 – Pt5 ) with novel nonsymmetric tetradentate ligands ( L1 – L5 ) were synthesized and characterized. Varying the structure of the metalating aromatic systems result in substantial changes in photophysical properties and intermolecular interaction mode of the complexes in solution and in solid state. The complexes are strongly emissive in tetrahydrofuran solution, with the band maxima ranging from 560 to 690 nm. Three of these complexes ( Pt1 , Pt2 , Pt4 ) afford nanospecies upon injection of their solution into water, which show aggregation-induced emission (AIE) with a strong red shift of emission bands. In the solid state, crystalline samples of these complexes demonstrate mechanochromism upon grinding with a bathochromic shift of the emission. DFT and TD-DFT computational analysis of monomeric Pt1 – Pt5 in solution and model dimeric emitters formed through intermolecular interaction of Pt1 , Pt2 , Pt4 molecules allowed assignment of observed AIE to the 3MMLCT excited states of Pt-Pt bonded aggregates of these complexes.  相似文献   

16.
Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3-(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A−1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.  相似文献   

17.
A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 % for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m−2. These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.  相似文献   

18.
Phosphorescent dopants are promising candidates for organic light-emitting diodes (OLEDs). Although it has been established that the out-coupling efficiency and overall performances of vacuum-deposited OLEDs can be significantly improved by a horizontal orientation of the dopants, no horizontally oriented gold(III) complexes have been reported to date. Herein, a novel class of tetradentate C^C^N^N ligand-containing gold(III) complexes with a preferential horizontal orientation successfully generated through a one-pot reaction is reported. These complexes demonstrate high photoluminescence quantum yields of 70 % and a high horizontal dipole ratio of 0.87 in solid-state thin films. Green-emitting OLEDs based on these complexes operate with a maximum external quantum efficiency of 20.6 % with an estimated out-coupling efficiency of around 30 %. A promising device stability has been achieved in the vacuum-deposited OLEDs, with operational half-lifetimes of around 37 500 h at 100 cd m−2.  相似文献   

19.
A series of coinage metal complexes asymmetrically substituted 2,5-diaryl phosphole ligands is reported. Structure, identity, and purity of all obtained complexes were corroborated with state-of-the-art techniques (multinuclear NMR, mass spectrometry, elemental analysis, X-ray diffraction) in solution and solid state. All complexes obtained feature luminescence in solution as well as in the solid state. Additionally, DOSY-MW NMR estimation experiments were performed to achieve information about the aggregation behavior of the complexes in solution allowing a direct comparison with their structures observed in the solid state.  相似文献   

20.
A novel series of four sublimable cationic iridium(III) complexes have been prepared with 1,10‐phenanthroline derivatives as ancillary ligands and the same negative counter‐ion, tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, which has a large steric hindrance and widely dispersed charges, thereby increasing the ionic radii, reducing the electrostatic interaction, and thus improving the volatility. Their structural, photophysical, electrochemical, and thermal properties have been fully characterized. Upon excitation, these compounds show polychromic emission varying from green to orange in solution, which are blue‐shifted in the solid state to different extents due to π–π conjugate effects in the ancillary ligands and the resulting molecular aggregation. OLEDs fabricated by vacuum evaporation deposition demonstrated desirable device performance with high efficiency and brightness, exhibiting various electroluminescent colors dependent upon doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号