首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intermolecular asymmetric dearomatization reaction of β‐naphthols with nitroethylene through a chiral‐thiourea‐catalyzed Michael reaction is described. Enantioenriched functionalized β‐naphthalenones with an all‐carbon quaternary stereogenic center could thus be easily constructed from simple naphthol derivatives in good yields and excellent enantioselectivity (up to 79 % yield, 98 % ee).  相似文献   

2.
A C? C bond‐forming conjugate reaction was successfully applied to the enantioselective dearomatization of β‐naphthols. A C(sp2)? C(sp3) bond is formed by using propargylic ketones as reactive partners. Good to excellent Z/E ratios and ee values were obtained by employing an in situ generated magnesium catalyst. Further transformations of the Z‐configured C? C double bond in the products were achieved under mild reaction conditions. Moreover, the stereocontrolling element of this magnesium‐catalyzed dearomatization reaction was explored by computational chemistry.  相似文献   

3.
A C C bond‐forming conjugate reaction was successfully applied to the enantioselective dearomatization of β‐naphthols. A C(sp2) C(sp3) bond is formed by using propargylic ketones as reactive partners. Good to excellent Z/E ratios and ee values were obtained by employing an in situ generated magnesium catalyst. Further transformations of the Z‐configured C C double bond in the products were achieved under mild reaction conditions. Moreover, the stereocontrolling element of this magnesium‐catalyzed dearomatization reaction was explored by computational chemistry.  相似文献   

4.
An Ir‐catalyzed intermolecular asymmetric dearomatization reaction of β‐naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized β‐naphthalenone compounds bearing an all‐carbon‐substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee . The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.  相似文献   

5.
A MgII‐mediated catalytic asymmetric dearomatization (CADA) reaction of β‐naphthols has been developed. The reaction proceeds under ambient temperature and give a series of chiral trisubstituted olefins with good chemoselectivities, Z/E ratios, and excellent enantioselectivities. A fluorinated β‐naphthol was designed to generate chiral organofluorine skeletons through the current CADA reaction. Moreover, an interesting tandem cyclization reaction was observed in the following transformation process through an undiscovered intramolecular hydride transfer pathway.  相似文献   

6.
A metal‐free C(sp2)–C(sp2) cross‐coupling approach to highly congested (E)‐α‐naphtholylenals from simple naphthols and enals is described. The mild reaction conditions with pyridine hydrobromideperbromide (PHBP) as the bromination reagent in the presence of piperidine or diphenylprolinol trimethylsilyl (TMS) ether as promoters enable the process in good yields and with high chemoselectivity, regioselectivity, and stereoselectivity. The process involves an unprecedented pathway of in situ regioselective 4‐bromination of 1‐naphthols and the subsequent unusual aromatic nucleophilic substitution of the resulting 4‐bromo‐1‐naphthols with the α‐C(sp2) of enals through a Michael‐type Friedel–Crafts alkylation–dearomatization followed by a cyclopropanation ring‐opening cascade process. The noteworthy features of this strategy are highlighted by the highly efficient creation of a C(sp2)–C(sp2) bond from readily available unfunctionalized naphthols and enals catalyzed by non‐metal, readily available cyclic secondary amines under mild reaction conditions.  相似文献   

7.
A highly efficient catalytic asymmetric dearomatization of naphthols by means of an electrophilic amination reaction catalyzed by chiral phosphoric acid is presented. This protocol provides a facile access to functionalized β‐naphthalenone compounds with a chiral quaternary carbon center in excellent yields and enantioselectivity (up to 99 % yield, up to 96 % ee).  相似文献   

8.
Copper‐catalyzed intermolecular oxidative‐etherification type dearomatization reaction of 2‐naphthols was developed. With air as the terminal oxidant, the reaction proceeded in excellent yields under mild conditions. In addition, the reaction between two different naphthol substrates occurred smoothly. A series of multifunctionalized β‐naphthalenones, important scaffold existed widely in natural products and biologically active molecules, were synthesized efficiently.  相似文献   

9.
A direct, facile, and highly diastereo‐ and enantioselective dearomatization reaction of β‐naphthol derivatives with aziridines has been developed for the first time. A newly designed Box–OH ligand was employed for an in situ generated magnesium catalyst and proved to be efficient. The corresponding dearomatization product was transformed into a polycyclic scaffold and polyhydroxylated compound. 1H NMR studies revealed the activation mode of the dearomatization process of β‐naphthols, and a clear positive nonlinear effect was observed in the reaction, and provides insight into the coordination environment around the MgII center and the possible active species.  相似文献   

10.
Catalytic asymmetric aminative dearomatization of 1‐substituted 2‐naphthols was successfully implemented with electrophilic azodicarboxylates under the catalysis of chiral ScIII/pybox complexes. This intermolecular reaction represents a hitherto unknown enantioselective C? N bond‐forming process through direct dearomatization of phenolic compounds to generate chiral nitrogen‐containing quaternary carbon stereocenters.  相似文献   

11.
Lewis acid‐catalyzed reactions of 2‐substituted cyclopropane 1,1‐dicarboxylates with 2‐naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene‐fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel–Crafts‐type addition of 2‐naphthols to cyclopropanes takes place, thus affording functionalized 2‐naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields.  相似文献   

12.
A novel palladium(0)‐catalyzed intermolecular arylative dearomatization of α‐naphthols and subsequent aza‐Michael reaction is described. Two adjacent stereocenters were constructed efficiently through consecutive arylative dearomatization and Michael addition reactions. By utilizing this method, structurally diverse benzomesembrine derivatives were synthesized with excellent yields and chemoselectivity. The benzomesembrine products were shown to undergo versatile functional‐group transformations.  相似文献   

13.
A copper‐catalyzed asymmetric [3+2] cycloaddition of 3‐trimethylsilylpropargylic esters with either β‐naphthols or electron‐rich phenols has been realized and proceeds by a desilylation‐activated process. Under the catalysis of Cu(OAc)2?H2O in combination with a structurally optimized ketimine P,N,N‐ligand, a wide range of optically active 1,2‐dihydronaphtho[2,1‐b]furans or 2,3‐dihydrobenzofurans were obtained in good yields and with high enantioselectivities (up to 96 % ee). This represents the first desilylation‐activated catalytic asymmetric propargylic transformation.  相似文献   

14.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

15.
An iridium‐catalyzed intramolecular asymmetric allylic dearomatization reaction of naphthol derivatives is described. Challenges confronted in this reaction include chemoselectivity between carbon and oxygen atoms as nucleophilic centers, diastereoselectivity when contiguous chiral centers are generated, and enantioselective control for constructing an all‐carbon quaternary stereocenter. In the presence of an iridium catalyst generated from [{Ir(dbcot)Cl}2] (dbcot=dibenzocyclooctatetraene) and a new THQphos (tetrahydroquinolinedinaphthophosphoramidite) ligand, various spironaphthalenones were obtained with up to greater than 95:5 C/O selectivity, greater than 95:5 d.r., and 99 % ee, thus providing a general method for the dearomatization of naphthols.  相似文献   

16.
The ring‐opening polymerization (ROP) of β‐butyrolactone (β‐BL) has been studied using the organocatalysts of diphenyl phosphate (DPP) and bis(4‐nitrophenyl) phosphate (BNPP). The controlled ROP of β‐BL was achieved using BNPP, whereas that of using DPP was insufficient because of its low acidity. For the BNPP‐catalyzed ROP of β‐BL, the dual activation property for β‐BL and the chain‐end models of poly(β‐butyrolactone) (PBL) were confirmed by NMR measurements. The optimized polymerization condition for the ROP of β‐BL proceeded through an O‐acyl cleavage to produce the well‐defined PBLs with molecular weights up to 10,650 g mol?1 and relatively narrow polydispersities of 1.19–1.39. Functional initiators were utilized for producing the end‐functionalized PBLs with the ethynyl, maleimide, pentafluorophenyl, methacryloyl, and styryl groups. Additionally, the diblock copolymers consisting of the PBL segment with the polyester or polycarbonate segments were prepared by the BNPP‐catalyzed ROPs of ε‐caprolactone or trimethylene carbonate without quenching. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2032–2039  相似文献   

17.
An oxidative β‐Csp3?H functionalization of tert‐butanol (tBuOH) for the construction of C?S bonds through an iodine‐catalyzed Csp3?H/S?H coupling was successfully achieved. Different kinds of mercaptans were shown to be good coupling partners, affording the desired products in good yields. This protocol not only offers a novel method for the synthesis of β‐hydroxy thioethers, but also provides an effective strategy for selective radical/radical cross‐coupling.  相似文献   

18.
An unprecedented dearomatized spirocyclopropane intermediate was discovered in a sequential Cp*RhIII‐catalyzed C?H activation and Wagner–Meerwein‐type rearrangement reaction. How the oxidative O?N bond is cleaved and the role of HOAc were uncovered in this study. Furthermore, a Cp*RhIII‐catalyzed dearomatization reaction of N‐(naphthalen‐1‐yloxy)acetamide with strained olefins was developed, affording a variety of spirocyclopropanes.  相似文献   

19.
A rhodium(II)‐ or copper(I)‐catalyzed formal intramolecular carbene insertion into vinylic C(sp2)−H bonds is reported herein. This method provides straightforward access to 1H ‐indenes with high efficiency and excellent functional‐group compatibility. Mechanistically, the reaction is proposed to involve the following sequence: metal carbene formation, intramolecular nucleophilic addition of the double bond to the electron‐deficient carbene carbon atom, dearomatization, and finally a 1,5‐H shift.  相似文献   

20.
Herein, we describe an unprecedented cascade reaction to β‐stereogenic γ‐lactams involving Pd(II)‐catalyzed enantioselective aliphatic methylene C(sp3)?H alkenylation–aza‐Wacker cyclization through syn‐aminopalladation. Readily available 3,3′‐substituted BINOLs are used as chiral ligands, providing the corresponding γ‐lactams with broad scope and high enantioselectivities (up to 98 % ee).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号