首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of unusual multilayered parallel lamellae‐in‐lamellae in symmetric supramolecular double‐comb diblock copolymers is presented. While keeping the concentration of surfactant fixed, the number of internal layers was found to increase with molecular weight M up to 34 for the largest block copolymer. The number of internal structures n was established to scale as M0.67 and therefore enables easy design of such structures with great precision.  相似文献   

2.
Quasi‐block copolymers (q‐BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end‐terminated by a functionality that interacts with the supramolecular monomer (a “chain stopper” functionality). A new design of q‐BCPs based on a general polymeric chain stopper, which consists of polystyrene end‐terminated with a sulfonate group (PS‐SO3Li), is described. Through viscosity measurements and a detailed diffusion‐ordered NMR spectroscopy study, it is shown that PS‐SO3Li can effectively cap two types of model supramolecular monomers to form q‐BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q‐BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q‐BCPs as smart, nanostructured materials.  相似文献   

3.
4.
In this paper, we report the synthesis and characterization of a new stimuli-responsive diblock polymer, i.e., methoxy poly (ethylene glycol)-block-Poly(N-isopropylacrylamide) (mPEG-b-PNIPAM), which belongs to the family of supramolecular amphiphiles. For this purpose, β-cyclodextrin (β-CD)-functionalized methoxy poly (ethylene glycol) (mPEG-CD) and adamantine (AD)-modified poly(N-isopropylacrylamide) (PNIPAM-AD) were synthesized. The diblock polymer mPEG-b-PNIPAM was then obtained by host–guest inclusion between mPEG-CD and PNIPAM-AD. The structure and molecular weight of the mPEG-b-PNIPAM was confirmed by 1HNMR and GPC, respectively. Above the lower critical solution temperature (LCST), mPEG-b-PNIPAM can self-assemble into nano-structures in aqueous solutions with PNIPAM block as the core and mPEG block as the corona. The aggregation behavior of mPEG-b-PNIPAM were revealed by UV-vis, DLS measurements, and TEM observations. The mPEG-b-PNIPAM was further utilized to construct Dox@mPEG-b-PNIPAM micelles at 37°C in phosphate-buffered saline (PBS). No detectable amount of Dox was released from the micelles at 37°C. When cooling to 27°C or adding a competitive reagent, however, release of Dox from the micelles was observed.  相似文献   

5.
ω‐Telechelic poly(p‐phenylene vinylene) species (PPVs) are prepared by living ring‐opening metathesis polymerization of a [2.2]paracyclophane‐1,9‐diene in the presence of Hoveyda–Grubbs 2nd generation initiator, with terminating agents based on N1,N3‐bis(6‐butyramidopyridin‐2‐yl)‐5‐hydroxyisophthalamide (Hamilton wedge), cyanuric acid, PdII–SCS‐pincer, or pyridine moieties installing the supramolecular motifs. The resultant telechelic polymers are self‐assembled into supramolecular block copolymers (BCPs) via metal coordination or hydrogen bonding and analyzed by 1H NMR spectroscopy. The optical properties are examined, whereby individual PPVs exhibit similar properties regardless of the nature of the end group. Upon self‐assembly, different behaviors emerge: the hydrogen‐bonding BCP behaves similarly to the parent PPVs whereas the metallosupramolecular BCP demonstrates a hypsochromic shift and a more intense emission owing to the suppression of aggregation. These results demonstrate that directional self‐assembly can be a facile method to construct BCPs with semiconducting networks, while combating solubility and aggregation.  相似文献   

6.
Summary: A convenient three‐step strategy has been developed for the preparation of well‐defined amphiphilic, linear‐hyperbranched block copolymers by hypergrafting. The synthetic procedure is based on a combination of carbanionic polymerization with the alkoxide‐based, controlled ring‐opening multibranching polymerization of glycidol. A linear AB diblock copolymer polystyrene‐block‐polybutadiene (PS‐b‐PB) with narrow polydispersity was obtained by anionic copolymerization. Subsequent hydroxylation by hydroboration led to PS508b‐(PB‐OH)56, used as macroinitiator for the polymerization of glycidol under slow monomer addition conditions.

Structure of the linear‐hyperbranched amphiphilic AB diblock copolymer PS508b‐(PB56hg‐PGx) and an AFM micrograph of its micellar core–shell structure observed after solution casting.  相似文献   


7.
Just add it! Ruthenium initiators functionalized with hydrogen‐bonding sites were utilized in ring‐opening metathesis polymerization to prepare heterotelechelic polymers with hydrogen‐bonding and metal‐coordination units in a single step. Supramolecular ABC triblock copolymers were then self‐assembled in one pot by simply adding complementary telechelic polymers to a solution of the heterotelechelic polymer (see picture).

  相似文献   


8.
We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol?1 are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non‐polar solvents or in the bulk. Hierarchical self‐assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well‐ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations.  相似文献   

9.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


10.
A major challenge in supramolecular polymerization is controlling the stability of the polymers formed, that is, controlling the rate of monomer exchange in the equilibrium between monomer and polymer. The exchange dynamics of supramolecular polymers based on benzene‐1,3,5‐tricarboxamide (BTA) can be regulated by copolymerizing molecules with dendronized (dBTA) and linear (nBTA) ethylene glycol‐based water‐soluble side chains. Whereas nBTAs form long nanofibers in water, dBTAs do not polymerize, forming instead small spherical aggregates. The copolymerization of the two BTAs results in long nanofibers. The exchange dynamics of both the BTA monomers in the copolymer are significantly slowed down in the mixed systems, leading to a more stable copolymer, while the morphology and spectroscopic signature of the copolymers are identical to that of nBTA homopolymer. This copolymerization is the supramolecular counterpart of styrene/ maleic anhydride copolymerization.  相似文献   

11.
We report a facile strategy to grow supramolecular copolymers on Au surfaces by successively exposing a surface‐anchored monomer to solutions of oppositely charged peptide comonomers. Charge regulation on the active chain end of the polymer sufficiently slows down the kinetics of the self‐assembly process to produce kinetically trapped copolymers at near‐neutral pH. We thereby achieve architectural control at three levels: The β‐sheet sequences direct the polymerization away from the surface, the height of the supramolecular copolymer brushes is well‐controlled by the stepwise nature of the alternating copolymer growth, and 2D spatial resolution is realized by using micropatterned initiating monomers. The programmable nature of the resulting architectures renders this concept attractive for the development of customized biomaterials or chiral interfaces for optoelectronics and sensor applications.  相似文献   

12.
Two well‐defined diblock copolymers with quadruple hydrogen‐bonding groups on one block, denoted PSUEA‐1 and PSUEA‐2 , have been synthesized, and novel snowflake‐shaped nanometer‐scale aggregates, self‐assembled by such diblock copolymers in non‐polar solvents, have been observed. The micellar dimensions were investigated by DLLS and SLLS. Their morphologies were studied by TEM. Since the degrees of polymerization of the Upy‐containing blocks of PSUEA‐1 and PSUEA‐2 are quite similar and the polystyrene block of the PSUEA‐1 is longer than that of the PSUEA‐2 , a subtle but identifiable difference between the sizes and structures of the PSUEA‐1 and PSUEA‐2 aggregates was noticed and characterized.

  相似文献   


13.
We report the assembly of supramolecular boxes and coordination polymers based on a rigid bis‐zinc(II)‐salphen complex and various ditopic nitrogen ligands. The use of the bis‐zinc(II)‐salphen building block in combination with small ditopic nitrogen ligands gave organic coordination polymers both in solution as well as in the solid state. Molecular modeling shows that supramolecular boxes with small internal cavities can be formed. However, the inability to accommodate solvent molecules (such as toluene) in these cavities explains why coordination polymers are prevailing over well‐defined boxes, as it would lead to an energetically unfavorable vacuum. In contrast, for relatively longer ditopic nitrogen ligands, we observed the selective formation of supramolecular box assemblies in all cases studied. The approach can be easily extended to chiral analogues by using chiral ditopic nitrogen ligands.  相似文献   

14.
15.
16.
We prepared new varied diblock copolymers by ring‐opening metathesis polymerization of functionalized norbornenes and cyclooctene in the presence of Schrock‐type initiators, either [Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OCCH3(CF3)2)2] or [Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OC(CH3)3)2]. The block copolymers were microphase separated and presented the individual phases of each polymer block constituent, that were amorphous/amorphous, amorphous/semicrystalline, or semicrystalline/liquid‐crystalline. One example of such a block copolymer is shown.

  相似文献   


17.
The cyclo‐P4 complexes [CpRTa(CO)24‐P4)] (CpR: Cp′′=1,3‐C5H3tBu2, Cp′′′=1,2,4‐C5H2tBu3) turned out to be predestined for the formation of hollow spherical supramolecules with non‐classical fullerene‐like topology. The resulting assemblies constructed with CuX (X=Cl, Br) showed a highly symmetric 32‐vertex core of solely four‐ and six‐membered rings. In some supramolecules, the inner cavity was occupied by an additional CuX unit. On the other hand, using CuI, two different supramolecules with either peanut‐ or pear‐like shapes and outer diameters in the range of 2–2.5 nm were isolated. Furthermore, the spherical supramolecules containing Cp′′′ ligands at tantalum are soluble in CH2Cl2. NMR spectroscopic investigations in solution revealed the formation of isomeric supramolecules owing to the steric hindrance caused by the third tBu group on the Cp′′′ ligand. In addition, a 2D coordination polymer was obtained and structurally characterized.  相似文献   

18.
Understanding and controlling the topology of self-assembled structures plays a fundamental role in supramolecular chemistry. Herein, the preparation of a series of tetranuclear metallarectangles and hexanuclear trefoil knots featuring Cp*Rh building blocks by template-free self-assembly with four different rigid and flexible ligands is described. Transformations between the trefoil knots and the corresponding macrocycles can be induced by using concentration effects. Remarkably, the hexanuclear trefoil knot 5 was shown to assemble further to provide rare examples of [12+1] heteronuclear double trefoil knots ( 5 a/5 b/5 c/5 d ) through coordination of the amide oxygen atoms to the secondary metal ions Na+/K+/Ca2+/Cd2+. The synthetic results are supported by single-crystal XRD.  相似文献   

19.
We introduce monosaccharides as versatile water‐soluble units to compatibilise supramolecular polymers based on the benzene‐1,3,5‐tricarboxamide (BTA) moiety with water. A library of monosaccharide‐based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α‐glucose, β‐glucose, α‐mannose and α‐galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one‐dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self‐assembly process is operative and that the introduction of different monosaccharides does not significantly change the self‐ assembly behaviour. Finally, we investigate the potential of post‐assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.  相似文献   

20.
Suprapolymers : The synthesis of symmetrically end‐functionalized polymers in a single step has been developed by means of ring‐opening metathesis polymerization by using a bimetallic ruthenium initiator and functional chain terminators. Self‐assembly of the resulting polymers allows for the formation of supramolecular alternating block copolymers (see figure).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号