首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems.  相似文献   

2.
The covalent nature of strong N?Br???N halogen bonds in a cocrystal ( 2 ) of N‐bromosuccinimide ( NBS ) with 3,5‐dimethylpyridine ( lut ) was determined from X‐ray charge density studies and compared to a weak N?Br???O halogen bond in pure crystalline NBS ( 1 ) and a covalent bond in bis(3‐methylpyridine)bromonium cation (in its perchlorate salt ( 3 ). In 2 , the donor N?Br bond is elongated by 0.0954 Å, while the Br???acceptor distance of 2.3194(4) is 1.08 Å shorter than the sum of the van der Waals radii. A maximum electron density of 0.38 e Å?3 along the Br???N halogen bond indicates a considerable covalent contribution to the total interaction. This value is intermediate to 0.067 e Å?3 for the Br???O contact in 1 , and approximately 0.7 e Å?3 in both N?Br bonds of the bromonium cation in 3 . A calculation of the natural bond order charges of the contact atoms, and the σ*(N1?Br) population of NBS as a function of distance between NBS and lut , have shown that charge transfer becomes significant at a Br???N distance below about 3 Å.  相似文献   

3.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

4.
The title compound, C20H12N8, (I), has been prepared by the reaction of 1,4‐dihydrazinophthalazine and pyridine‐2‐carbox­aldehyde, followed by an oxidative cyclization by treatment with bromine. In the solid state, the mol­ecules of (I) are discrete, comprising a fused and twisted four‐ring system with an overall helical appearance. The distance between the two intramolecular pyridyl N atoms is 3.075 (2) Å, this short contact distance suggesting a π–π interaction.  相似文献   

5.
Crystals of hexa‐tert‐butyldisilane, C24H54Si2, undergo a reversible phase transition at 179 (2) K. The space group changes from Ibca (high temperature) to Pbca (low temperature), but the lattice constants a, b and c do not change significantly during the phase transition. The crystallographic twofold axis of the molecule in the high‐temperature phase is replaced by a noncrystallographic twofold axis in the low‐temperature phase. The angle between the two axes is 2.36 (4)°. The centre of the molecule undergoes a translation of 0.123 (1) Å during the phase transition, but the conformation angles of the molecule remain unchanged. Between the two tri‐tert‐butylsilyl subunits there are six short repulsive intramolecular C—H...H—C contacts, with H...H distances between 2.02 and 2.04 Å, resulting in a significant lengthening of the Si—Si and Si—C bonds. The Si—Si bond length is 2.6863 (5) Å and the Si—C bond lengths are between 1.9860 (14) and 1.9933 (14) Å. Torsion angles about the Si—Si and Si—C bonds deviate by approximately 15° from the values expected for staggered conformations due to intramolecular steric H...H repulsions. A new polymorph is reported for the crystal structure of 1,1,2,2‐tetra‐tert‐butyl‐1,2‐diphenyldisilane, C28H46Si2. It has two independent molecules with rather similar conformations. The Si—Si bond lengths are 2.4869 (8) and 2.4944 (8) Å. The C—Si—Si—C torsion angles deviate by between −3.4 (1) and −18.5 (1)° from the values expected for a staggered conformation. These deviations result from steric interactions. Four Si—C(t‐Bu) bonds are almost staggered, while the other four Si—C(t‐Bu) bonds are intermediate between a staggered and an eclipsed conformation. The latter Si—C(t‐Bu) bonds are about 0.019 (2) Å longer than the staggered Si—C(t‐Bu) bonds.  相似文献   

6.
Current interest in lone‐pair???π (lp???π) interactions is gaining momentum in biochemistry and (supramolecular) chemistry. However, the physicochemical origin of the exceptionally short (ca. 2.8 Å) oxygen‐to‐nucleobase plane distances observed in prototypical Z‐DNA CpG steps remains unclear. High‐level quantum mechanical calculations, including SAPT2+3 interaction energy decompositions, demonstrate that lp???π contacts do not result from n→π* orbital overlaps but from weak dispersion and electrostatic interactions combined with stereochemical effects imposed by the locally strained structural context. They also suggest that the carbon van der Waals (vdW) radii, originally derived for sp3 carbons, should not be used for smaller sp2 carbons attached to electron‐withdrawing groups. Using a more adapted carbon vdW radius results in these lp???π contacts being no longer of the sub‐vdW type. These findings challenge the whole lp???π concept that refers to elusive orbital interactions that fail to explain short interatomic contact distances.  相似文献   

7.
Combination of an electron‐rich molecule (e.g. chloride anion or nitrile group) with a chlorinated cyclohexasilane ring produces a supramolecular inverse sandwich complex formed by two guests (Cl? or R?C≡N) strongly bonded to both faces of a planar host (Si6 ring). In‐depth theoretical studies were carried out to investigate the nature of the bonding interactions that generate such a stable complex. Second‐order Møller–Plesset perturbation theory (MP2) calculations confirmed that the presence of the Cl substituents is fundamental to the stability of the supramolecular assemblies. The density functional theory (DFT) functional wB97XD gave an estimation of the contribution of dispersion interactions to the binding energy. These interactions become more important as the Cl atoms of the rings are systematically replaced by methyl groups or hydrogen atoms. Analysis of the topology of the electron density and the reduced density gradient gave insight into the binding of the studied supramolecular assemblies.  相似文献   

8.
The title compound, C33H34O2Si, has been obtained as a product in the synthesis of 6,13‐bis­[(triisopropyl­silyl)ethynyl]‐6,13‐dihydro­penta­cene‐6,13‐diol. The solid‐state structure reveals a dimer, with strong hydrogen bonds holding the two mol­ecules in a face‐to‐face arrangement [O⋯O = 2.746 (2) Å and O—H⋯O = 173 (2)°]. Within each dimer, the penta­cene units are π‐stacked (the distance between the mean least‐squares planes of 22 C atoms is 3.60 Å).  相似文献   

9.
Intermetallic compounds SrNi2Si and BaNi2Si were prepared by arc‐melting of stoichiometric mixture of the elements and subsequent annealing in welded niobium ampoules. Both compounds were investigated by X‐ray diffraction on powder as well as single crystal methods. The title compounds both crystallize in the BaNi2Ge structure type (space group Pmmn, Z = 2), a ternary ordered variant of TiCu3: a = 4.0296(9) Å, b = 6.5121(14) Å, c = 5.6839(21) Å, R1 = 0.040 for SrNi2Si and a = 4.0681(9) Å, b = 6.580(4) Å, c = 5.976(5) Å, R1 = 0.031 for BaNi2Si. The structure contains corrugated polyanionic [Ni2Si]2– layers, stacked according to the primitive sequence AA along the c axis. Six‐membered Ni rings adopt a boat conformation, silicon atoms are in the plane with nickel, and the alkaline earth cations sit between the layers. These two compounds extend the family AeNi2X (Ae = Ca, Sr, Ba; X = Si, Ge), where up to date CaNi2Si, SrNi2Ge, and BaNi2Ge are known. LMTO band structure calculations, including DOS, COHP, and ELF were performed to gain more insight into the electronic situation of SrNi2Si and BaNi2Si.  相似文献   

10.
A new cadmium coordination polymer, [Cd(C5H2N2O4)(H2O)2]n, possesses a one‐dimensional zigzag chain structure built from CdII centers bridged sequentially by pairs of O and N atoms of the 5‐carboxyimidazole‐4‐carboxylate ligand. The CdII center is in a distorted octahedral geometry, being coordinated by two O atoms from two coordinated water mol­ecules [Cd—O = 2.322 (7) and 2.364 (7) Å], and by two N atoms [Cd—N = 2.222 (6) and 2.232 (6) Å] and two carboxyl O atoms [Cd—O = 2.383 (6) and 2.414 (6) Å] from two 5‐carboxyimidazole‐4‐carboxylate ligands.  相似文献   

11.
The molecular structure of the title compound, also known as 2‐thio­thymine [systematic name: 2,3‐di­hydro‐5‐methyl‐2‐thioxopyrimidin‐4(1H)‐one], C5H6N2OS, is similar to that of thymine, with only small changes in the ring structure, apart from a significant difference at the substitution site [S=C = 1.674 (1) Å]. The mol­ecules are connected by hydrogen bonds, with N—H?O = 2.755 (2) Å and N—H?S = 3.352 (1) Å. The hydrogen‐bond network is different from that in thymine, since it involves all the donor and acceptor atoms.  相似文献   

12.
The structures of a 2‐oxa‐5‐thia­bi­cyclo­[4.1.0]­heptane derivative, C7H10Cl2O3S, (I), and a 2H,3H,5H‐1,4‐dithiepine derivative, C7H9ClO4S2, (II), are reported. The six‐membered ring in (I) has an envelope conformation and the seven‐membered ring in (II) adopts a chair conformation. There are no untoward intermolecular interactions in (I), but two Cl atoms make a short intermolecular contact across an inversion centre in (II), with a Cl?Cl distance of 3.2784 (9) Å, some 0.22 Å less than the sum of the van der Waals radii.  相似文献   

13.
The title compound, 2,2′‐(2,4,8,10‐tetra­thia­spiro­[5.5]­undec­ane‐3,9‐diyl­idene)­bis­(propane­di­nitrile), C13H8N4S4, has been designed and synthesized for use as a potential new organic molecular electronic material. The spiro‐annulated structure has twofold symmetry and is formed by two equal push–pull ethyl­ene units, with the cyclo­alkyl­thio groups as electron donors and the cyano groups as electron acceptors. The intermolecular S?N non‐bonded separation within a layer in the lattice is 3.296 (6) Å, indicating a strong intermolecular interaction between the cyano groups and the S atoms, while the S atoms in two neighbouring mol­ecules have a shortest S?S contact of 3.449 (3) Å. In addition, attractive C—H?N and C—H?S interactions bridge adjacent mol­ecules either within a layer or between layers. In short, these four types of intermolecular interactions combine to form an extended three‐dimensional network in the lattice, resulting in a highly ordered array of molecular packing.  相似文献   

14.
Synthesis and Crystal Structures of the Calcium Iridium Silicides Ca3Ir4Si4 and Ca2Ir2Si The new compounds Ca3Ir4Si4 und Ca2Ir2Si were prepared by reaction of the elemental components in sealed tantalum ampoules at 1200 °C. Their structures were determined from X‐ray single crystal data. Ca3Ir4Si4(cubic, space group I4¯3m, a = 7.4171(2)Å, Z = 2) crystallizes with the Na3Pt4Ge4 type structure. For Ca2Ir2Si (monoclinic, space group C2/c, a = 9.6567(5)Å, b = 5.8252(2)Å, c = 7.3019(4)Å, β = 100.212(2)°, Z = 4) a new structure was found. Chains of edge sharing, heavily distorted SiIr4‐tetrahedra (Ir‐Si: 2.381 and 2.414Å) are connected via short Ir—Ir‐contacts (2.640Å) to form an open Ir/Si‐framework accommodating a three‐dimensional arrangement of calcium atoms (Ca—Ca: 3.413 ‐ 3.948Å).  相似文献   

15.
16.
BaY2Si3O10, barium diyttrium trisilicate, is a new silicate grown from a molybdate‐based flux. The structure is based on zigzag chains, parallel to [010], of edge‐sharing distorted YO6 octa­hedra, linked by horseshoe‐shaped trisilicate groups and Ba atoms in irregular eight‐coordination. The layered character of the structure is caused by a succession of zigzag chains and trisilicate groups in planes parallel to (01). The Ba atoms occupy narrow channels extending parallel to [100]. The mean Y—O, Si—O and Ba—O bond lengths are 2.268, 1.626 and 1.633, and 2.872 Å, respectively. The two symmetry‐equivalent terminal SiO4 tetra­hedra in the Si3O10 unit adopt an eclipsed conformation with respect to the central SiO4 tetra­hedron; the Si—O—Si and Si—Si—Si angles are 136.35 (9) and 96.12 (4)°, respectively. One Ba, one Si and two O atoms are located on mirror planes; all remaining atoms are in general positions. The geometry of isolated trisilicate groups in inorganic compounds is briefly discussed.  相似文献   

17.
The molecule of the title compound, C19H27NO3, is essentially planar, with all non‐H atoms within 0.2 Å of the nine‐membered indole plane, except for the three tert‐butyl C atoms. The C5 pentyl chain is in an extended conformation, with three torsion angles of 179.95 (13), 179.65 (13) and −178.95 (15)° (the latter two angles include the C atoms of the C5 chain only). Three intramolecular C—H⋯Ozdbnd;C contacts are present (C⋯O < 3.05 Å and C—H⋯O > 115°), and an intermolecular C—H⋯Ozdbnd;C contact and π–π stacking complete the intermolecular interactions.  相似文献   

18.
The title compound, C22H30N2O2·H2O, is an 18‐membered di­aza‐crown ether ligand containing two ether O and two aza N atoms. In the macrocyclic ring, the mean N⋯O distance is 4.526 (4) Å. The macrocyclic inner‐hole size, estimated as twice the mean distance of the donor atoms from their centroid, is ∼2.29 Å.  相似文献   

19.
Treating [Cp*V(μ‐Cl)2]3 (Cp* = C5Me5) and [(2,6‐i‐Pr2C6H3N)2MoMe2], respectively, with Me3SnF afforded the title compounds [Cp*V(μ‐F)2]4 ( 1 ) and [(2,6‐i‐Pr2C6H3N)2MoF2] · THF ( 2 ). 1 has a tetrameric structure, in which four V atoms can be regarded as being arranged at the vertices of a distorted tetrahedron, with four long edges bridged by one F atom and each of the other two short edges bridged by two F atoms with a mean V–F bond length of 2.00 Å. A hydrolyzed product of 2 , [(2,6‐i‐Pr2C6H3N)6Mo43‐F)2Me2(μ‐O)4] ( 3 ) was characterized by elemental analyses and X‐ray single crystal study. The X‐ray diffraction analysis reveals that 3 has a unique tetranuclear structure, containing two five and two six coordinated Mo atoms connecting each other by four μ‐O and two μ3‐F atoms. The geometries around the two Mo atoms can be described having distorted trigonal bipyramidal and distorted octahedral coordination spheres, respectively. The Mo–(μ‐O) bond lengths are 1.813 Å (average) for five coordinated Mo atoms and 2.030 Å (average) for those of six coordinated, respectively, indicating an additional π bonding between five coordinated Mo atoms and the μ‐O atoms. The Mo–(μ3‐F) distances range from 2.291 to 2.352 Å.  相似文献   

20.
The conformation of the title compound, C34H30N4O4S2, is strongly influenced by intramolecular N—H?N hydrogen‐bond interactions and by the rigidity endowed by the presence of a phenyl group between the imine N atoms. The molecule is not planar, with very short distances between the imine N atoms [N?N 2.753 (3) Å] and the amine N atoms [N?N 5.148 (4) Å]. Consequently, important changes in its conformation will be required if it is to act as a tetradentate ligand via its four N atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号