首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Supramolecular capsules were assembled by neutral halogen bonding (XB) and studied in the solid state, in solution, and in the gas phase. The geometry of the highly organized capsules is shown by an X‐ray crystal structure which features the assembly of two XB hemispheres, geometrically rigidified by H‐bonding to eight MeOH molecules and encapsulation of two benzene guests. To enhance capsular association strength, tuning the XB donor is more efficient than tuning the XB acceptor, due to desolvation penalties in protic solvents, as shown for a tetraquinuclidine XB acceptor hemisphere. With a tetra(iodoethynyl) XB donor and a tetralutidine XB acceptor, the association in deuterated benzene/acetone/methanol 70:30:1 at 283 K reaches K a=(2.11±0.39)×105 m −1G =−6.9±0.1 kcal mol−1). The stability of the XB capsules in the gas phase was confirmed by electrospray ionization mass spectrometry (ESI‐MS). A new guest binding site was uncovered within the elongated iodoethynyl capsule.  相似文献   

2.
A diethylpyrrole‐bridged dizinc(II) bisporphyrin (Zn2DEP) is reported that encapsulates fluorescent probe pyrene molecules through strong π–π interactions, which can relay information about the chemical environment in the interior of the host–guest supramolecular assembly. X‐ray structures of both Zn2DEP and the encapsulated pyrene complex are reported, which provides a rare opportunity to investigate the structural changes upon guest binding. A comparative structural analysis demonstrated the exceptional ability of this bisporphyrin platform to open its binding pocket for pyrene encapsulation by a vertical displacement of more than 2.45 Å, although both Zn2DEP and the pyrene complex have nearly parallel porphyrin ring orientations. The 1H NMR spectrum of the encapsulated pyrene complex in solution shows the upfield shifts of the pyrene protons due to a strong ring current effect, which demonstrates the retention of the solid‐state structure in solution. To further assess the extent to which pyrene guests remain encapsulated in solution, a known fluorescence quencher, dimethylaniline, was added to the host–guest assembly, which shows no exciplex formation for days in nonpolar solvents. Thus, the assembly also retained the structural integrity in solution for a long time. The association constant (Kasso) for such a complexation process in solution was observed to be 1.78×105 M ?2 for 1:2 binding. Steady‐state fluorescence and lifetime studies indicate significant photoinduced singlet–singlet energy transformation from the excited state of pyrene to zinc bisporphyrin.  相似文献   

3.
Guest‐induced M18L6–M24L8 capsule–capsule conversion is reported. Both capsules are composed of PdII ethylenediamine units (M) and 1,3,5‐tris(3,5‐pyrimidyl)pyrimidine (L), and form trigonal bipyramidal (M18L6) and octahedral (M24L8) closed‐shell structures with huge hydrophobic inner spaces. The M18L6 trigonal bipyramid is converted to the M24L8 octahedron through encapsulation of large aromatic guests, with the latter capsule possessing a cavity volume three times larger than the former. Despite the dynamic properties of the capsule host, the encapsulated guests are difficult to extract and are thus isolated from the external environment.  相似文献   

4.
Pseudo‐octahedral MII6L4 capsules result from the subcomponent self‐assembly of 2‐formylphenanthroline, threefold‐symmetric triamines, and octahedral metal ions. Whereas neutral tetrahedral guests and most of the anions investigated were observed to bind within the central cavity, tetraphenylborate anions bound on the outside, with one phenyl ring pointing into the cavity. This binding configuration is promoted by the complementary arrangement of the phenyl rings of the intercalated guest between the phenanthroline units of the host. The peripherally bound, rapidly exchanging tetraphenylborate anions were found to template an otherwise inaccessible capsular structure in a manner usually associated with slow‐exchanging, centrally bound agents. Once formed, this cage was able to bind guests in its central cavity.  相似文献   

5.
The complexation of chiral guests in the cavity of dimeric self‐assembled chiral capsule 1 2 was studied by using NMR spectroscopy and X‐ray crystallography. Capsule 1 2 has walls composed of amino acid backbones forming numerous directional binding sites that are arranged in a chiral manner. The polar character of the interior dictates the encapsulation preferences towards hydrophilic guests and the ability of the capsule to extract guests from water into an organic phase. Chiral discrimination towards hydroxy acids was evaluated by using association constants and competition experiments, and moderate de values were observed (up to 59 %). Complexes with one or two guest molecules in the cavity were formed. For 1:1 complexes, solvent molecules are coencapsulated; this influences guest dynamics and makes the chiral recognition solvent dependent. Reversal of the preferences can be induced by coencapsulation of a nonchiral solvent in the chiral internal environment. For complexes with two guests, filling of the capsule’s internal space can be very effective and packing coefficients of up to 70 % can be reached. The X‐ray crystal structure of complex 1 2?((S) ‐6 )2 with well‐resolved guest molecules reveals a recognition motif that is based on an extensive system of hydrogen bonds. The optimal arrangement of interactions with the alternating positively and negatively charged groups of the capsule’s walls is fulfilled by the guest carboxylic groups acting simultaneously as hydrogen‐bond donors and acceptors. An additional guest molecule interacting externally with the capsule reveals a possible entrance mechanism involving a polar gate. In solution, the structural features and dynamic behavior of the D4‐symmetric homochiral capsule were analyzed by variable‐temperature NMR spectroscopy and the results were compared with those for the S8‐symmetric heterochiral capsule.  相似文献   

6.
N‐Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand‐like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation–anion circular hydrogen‐bonded seam of the hosts, as well as through CH ??? π interactions. The N‐alkyl ammonium resorcinarene chlorides cooperatively bind a series of di‐acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first binding constants were similar (K1: 102 M ?1) for each host. The second binding constant was found to depend on the upper rim substituent of the host and the spacer length of the guests, with the optimum binding observed with the six‐carbon spacer (K2: 103 M ?2). Short spacer lengths increase steric hindrance, whereas longer spacer lengths increase flexibility thus reducing cooperativity. The host with the rigid cyclohexyl upper rim showed stronger binding than the host with flexible benzyl arms. The cooperative binding of these divalent guests was studied in solution through 1H NMR titration studies and supplemented by diffusion‐ordered spectroscopy (DOSY), X‐ray crystallography, and mass spectrometry.  相似文献   

7.
Subtle differences in metal–ligand bond lengths between a series of [M4L6]4? tetrahedral cages, where M=FeII, CoII, or NiII, were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single‐crystal X‐ray diffraction was used to study the solid‐state complexes of the iron(II) and nickel(II) cages.  相似文献   

8.
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy‐transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh‐Cp‐type metal complexes can be encapsulated inside a self‐assembled M6L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co‐encapsulation is observed. This principle is demonstrated by co‐encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge‐transfer interaction may also contribute to this effect. Charge‐transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge‐transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge‐transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.  相似文献   

9.
Abstract

The binding features of a sulfonato-calix[4]arene with pyridinium-based gemini guests have been investigated in water at physiological condition by NMR spectroscopy. Results provided converging evidence showing that guests having different size, shape and flexibility formed water-soluble homodimeric supramolecular capsules. The remarkably large encapsulation efficiency of the anionic calixarene host towards these bis(pyridinium) gemini guests results from the favourable combination of electrostatic and hydrophobic interactions. The introduction of short and rigid spacers between the two positively charged heads of the guest improves the efficiency of the capsule formation. The insertion of a substituent into the pyridinium ring of the guest dramatically affects both the association constants and the binding modes.  相似文献   

10.
To gain insight into the host functions of a nanocavity encircled by both polyaromatic panels and heteroatoms, nitrogen‐doped polyaromatic capsules were successfully synthesized from metal ions and pyridine‐embedded, bent anthracene‐based ligands. The new capsules display unique host–guest interactions in the isolated cavities, which are distinct from those of the undoped analogues. Besides the inclusion of Ag+ ions, the large absorption change of fullerene C60 and altered emission of a BODIPY dimer are observed upon encapsulation by the present hosts. Moreover, the N‐doped capsule exhibits specific binding ability toward progesterone and methyltestosterone, known as a natural female and synthetic male hormone, respectively, in water.  相似文献   

11.
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron‐rich guests and detail the influence of encapsulation on the charge‐transfer interactions between guests. For the mono‐bipyridinium guest (methylviologen, MV 2+), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge‐transfer interactions between methylviologen and dihydroxynaphthalene ( HN ) by mainly forming the 1:2:1 packed “sandwich” complex (CB[10] ? 2 MV 2+ ?HN ). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to “U” shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane‐blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X‐ray crystal structure. Finally, a supramolecular “Russian doll” was built up by threading a guest through the cavities of both blue box and CB[10].  相似文献   

12.
Planar pyridyl N‐oxides are encapsulated in mono‐metallic PdII/PtII‐cages based on a tetra‐pyridyl calix[4]pyrrole ligand. The exchange dynamics of the cage complexes are slow on both the NMR chemical shift and EXSY timescales, but encapsulation of the guests by the cages is fast on the human timescale. A “French doors” mechanism, involving the rotation of the meso‐phenyl walls of the cages, allows the passage of the planar guests. The encapsulation of quinuclidine N‐oxide, a sterically more demanding guest, is slower than pyridyl N‐oxides in the PdII‐cage, and does not take place in the PtII counterpart. A modification of the encapsulation mechanism for the quinuclidine N‐oxide is postulated that requires the partial dissociation of the PdII‐cage. The substrate binding selectivity featured by the cages is related to their different guest uptake/release mechanisms.  相似文献   

13.
A rigid, covalently linked perylene‐3,4:9,10‐tetracarboxylic acid bisimide (PBI) cyclophane was synthesized by imidization of a bay‐substituted perylene bisanhydride with p‐xylylenediamine. The interchromophoric distance of approximately 6.5 Å establishes an ideal rigid cavity for the encapsulation of large aromatic compounds such as perylene and anthracene with binding constants up to 4.6×104 M ?1 (in CHCl3). For electron‐poor guest molecules, the complexation process is accompanied by a significantly increased fluorescence, whereas the emission intensity is dramatically quenched by more electron‐rich guests because of the formation of charge‐transfer complexes. Furthermore, the influence of the PBI core twist on the binding constant results in a remarkable selectivity towards more flexible aromatic guest molecules.  相似文献   

14.
A tetragold(I) rectangle‐like metallocage containing two pyrene‐bis‐imidazolylidene ligands and two carbazolyl‐bis‐alkynyl linkers is used for the encapsulation of a series of polycyclic aromatic hydrocarbons (PAHs), including corannulene. The binding affinities obtained for the encapsulation of the planar PAHs guests in CD2Cl2 are found to exponentially increase with the number of π‐electrons of the guest (1.3 > logK >6.6). For the bowl‐shaped molecule of corannulene, the association constant is much lower than the expected one according to its number of electrons. The molecular structure of the host–guest complex formed with corannulene shows that the molecule of the guest is compressed, while the host is expanded, thus showing an interesting case of artificial mutual induced‐fit arrangement.  相似文献   

15.
Guest‐binding affinities of water‐soluble cyclophane heptadecamer (1) and pentamer (2) with immobilized guests such as 1‐pyrenylmethylamine (PMA) and 2‐(1‐ naphthyl)ethylamine (NEA) were investigated by surface plasmon resonance (SPR) measurements. As a typical example, the binding constants (K) for 1 and 2 with the immobilized PMA as a guest were evaluated to be 2.5 × 107 and 2.7 × 106 M?1, respectively, and were much larger than that of a monocyclic reference cyclophane (K, 2.5 × 104 M?1). Interestingly, in the complexation of 1 and 2 with the immobilized guests, more favorable association and dissociation rate constant values (ka and kd, respectively) were observed in comparison with those for the monocyclic cyclophane, reflecting multivalent effects in macrocycles. The multivalent effects in macrocycles as well as molecular recognition abilities of the cyclophane oligomers were confirmed even when the guest molecules were immobilized on SPR sensor chip surfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Molecular capsules composed of amino acid or peptide derivatives connected to resorcin[4]arene scaffolds through acylhydrazone linkers have been synthesized using dynamic covalent chemistry (DCC) and hydrogen‐bond‐based self‐assembly. The dynamic character of the linkers and the preference of the peptides towards self‐assembly into β‐barrel‐type motifs lead to the spontaneous amplification of formation of homochiral capsules from mixtures of different substrates. The capsules have cavities of around 800 Å3 and exhibit good kinetic stability. Although they retain their dynamic character, which allows processes such as chiral self‐sorting and chiral self‐assembly to operate with high fidelity, guest complexation is hindered in solution. However, the quantitative complexation of even very large guests, such as fullerene C60 or C70, is possible through the utilization of reversible covalent bonds or the application of mechanochemical methods. The NMR spectra show the influence of the chiral environment on the symmetry of the fullerene molecules, which results in the differentiation of diastereotopic carbon atoms for C70, and the X‐ray structures provide unique information on the modes of peptide–fullerene interactions.  相似文献   

17.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

18.
Self‐assembly and characterization of novel heterodimeric diphosphine capsules formed by multiple ionic interactions and composed of one tetracationic diphosphine ligand and one complementary tetraanionic calix[4]arene are described. Encapsulation of a palladium atom within a diphosphine capsule is achieved successfully by using the metal complex of the tetracationic diphosphine ligand for the assembly process. In this templated approach to metal encapsulation, the transition‐metal complex is an integrated part of the capsule with the transition metal located inside the capsule and is not involved in the assembly process. We present two approaches for capsule assembly by mixing solutions of the precharged building blocks in methanol and mixing solutions of the neutral building blocks in methanol. The scope of the diphosphine capsules and the metallodiphosphine capsules is easily extended by applying tetracationic diphosphine ligands with different backbones (ethylene, diphenyl ether, and xanthene) and cationic binding motifs (p‐C6H4‐CH2‐ammonium, m‐C6H4‐ammonium, and m‐C6H4‐guanidinium). These tetracationic building blocks with different flexibilities and shapes readily associate into capsules with the proper capsular structure, as is indicated by 1H NMR spectroscopy, 1D NOESY, ESI‐MS, and modeling studies.  相似文献   

19.
A molecular tweezer based on a glycoluril-derived framework bearing four phosphate groups was synthesized and shown to be capable of binding organic amines in aqueous solution. This work reports the Ka values for 30 complexes of this molecular tweezer and amine guests, determined by means of 1H NMR titrations. Both the hydrophobic cavity and the phosphate groups contribute to the binding. Bulkier molecules and molecules bearing negatively charged groups like carboxylates in amino acids bind less tightly due to a steric clash and coulombic repulsion. The narrow cavity and the strong ionic interactions of the phosphate groups with ammonium guests favor binding of aliphatic diamines. These binding properties clearly distinguish this system from structurally related molecular clips and tweezers.  相似文献   

20.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号