首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

2.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5‐bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish‐orange PL) in TbIII/EuIII‐mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

3.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5-bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish-orange PL) in TbIII/EuIII-mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

4.
A design for an effective molecular luminescent thermometer based on long-range electronic coupling in lanthanide coordination polymers is proposed. The coordination polymers are composed of lanthanide ions EuIII and GdIII, three anionic ligands (hexafluoroacetylacetonate), and a chrysene-based phosphine oxide bridges (6,12-bis(diphenylphosphoryl)chrysene). The zig-zag orientation of the single polymer chains induces the formation of packed coordination structures containing multiple sites for CH-F intermolecular interactions, resulting in thermal stability above 350 °C. The electronic coupling is controlled by changing the concentration of the GdIII ion in the EuIII-GdIII polymer. The emission quantum yield and the maximum relative temperature sensitivity (Sm) of emission lifetimes for the EuIII-GdIII polymer (Eu:Gd=1:1, Φtot=52 %, Sm=3.73 % K−1) were higher than those for the pure EuIII coordination polymer (Φtot=36 %, Sm=2.70 % K−1), respectively. Enhanced temperature sensing properties are caused by control of long-range electronic coupling based on phosphine oxide with chrysene framework.  相似文献   

5.
The distorted coordination structures and luminescence properties of novel lanthanide complexes with oxo‐linked bidentate phosphane oxide ligands—4,5‐bis(diphenylphosphoryl)‐9,9‐dimethylxanthene (xantpo), 4,5‐bis(di‐tert‐butylphosphoryl)‐9,9‐dimethylxanthene (tBu‐xantpo), and bis[(2‐diphenylphosphoryl)phenyl] ether (dpepo)—and low‐vibrational frequency hexafluoroacetylacetonato (hfa) ligands are reported. The lanthanide complexes exhibit characteristic square antiprism and trigonal dodecahedron structures with eight‐coordinated oxygen atoms. The luminescence properties of these complexes are characterized by their emission quantum yields, emission lifetimes, and their radiative and nonradiative rate constants. Lanthanide complexes with dodecahedron structures offer markedly high emission quantum yields (Eu: 55–72 %, Sm: 2.4–5.0 % in [D6]acetone) due to enhancement of the electric dipole transition and suppression of vibrational relaxation. These remarkable luminescence properties are elucidated in terms of their distorted coordination structures.  相似文献   

6.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

7.
The title complex, [Eu(C6H4O2)3(H2O)2], has a double carboxyl­ate‐bridged infinite‐chain structure, with one chelating carboxyl­ate group on each Eu ion centre, which also binds to two water mol­ecules to yield an eight‐coordinate square‐antiprismatic geometry, with Eu—O bond lengths in the range 2.338 (3)–2.594 (3) Å. The pyridine N atoms of the isonicotinate groups do not coordinate to the Eu ions; instead, they direct the formation of EuIII coordination polymers via hydrogen bonding with coordinated water mol­ecules.  相似文献   

8.
In this study, we have demonstrated a two-legged, upright molecular design method for monochromatic and bright red luminescent LnIII-silica nanomaterials. A novel EuIII-silica hybrid nanoparticle was developed by using a doubly binding TPPO−Si(OEt)3 (TPPO: triphenyl phosphine oxide) linker. The TPPO−Si(OEt)3 was confirmed by 1H, 31P, 29Si NMR spectroscopy and single-crystal X-ray analysis. Luminescent Eu(hfa)3 and Eu(tfc)3 moieties (hfa: hexafluoroacetylacetonate, tfc: 3-(trifluoromethylhydroxymethylene)camphorate) were fixed onto TPPO−Si(OEt)3-modified silica nanoparticles, producing Eu(hfa)3(TPPO−Si)2-SiO2 and Eu(tfc)3(TPPO−Si)2-SiO2, respectively. Eu(hfa)3(TPPO−Si)2−SiO2 exhibited the higher intrinsic luminescence quantum yield (93 %) and longer emission lifetime (0.98 ms), which is much larger than those of previously reported EuIII-based hybrid materials. Eu(tfc)3(TPPO−Si)2−SiO2 showed an extra-large intrinsic emission quantum yield (54 %), although the emission quantum yield for the precursor Eu(tfc)3(TPPO−Si(OEt)3)2 was found to be 39 %. These results confirmed that the TPPO−Si(OEt)3 linker is a promising candidate for development of EuIII-based luminescent materials.  相似文献   

9.
Investigating the coordination chemistry of H2CDA (4‐oxo‐1,4‐dihydro‐2,6‐pyridinedicarboxylic acid) with rare earth salts Ln(NO3)3 under hydrothermal conditions, structure transformation phenomenon was observed. The ligand, H2CDA charged to its position isomer, enol type structure, H3CAM (4‐hydroxypyridine‐2,6‐dicarboxylic acid). Six new lanthanide(III) coordination polymers with the formulas [Ln(CAM)(H2O)3]n [Ln = La ( 1 ), Pr, ( 2 )] and {[Ln(CAM)(H2O)3] · H2O}n [Ln = Nd, ( 3 ), Sm, ( 4 ), Eu, ( 5 ), Y, ( 6 )] were synthesized and characterized. The X‐ray structure analyses show two kinds of coordination structures. The complexes 1 and 2 and 3 – 6 are isostructural. Complexes 1 and 2 crystallize in the monoclinic C2/c space group, whereas 3 – 6 crystallize in the monoclinic system with space group P21/n. In the two kinds of structures, H3CAM displays two different coordination modes. The SmIII and EuIII complexes exhibit the corresponding characteristic luminescence in the visible region at an excitation of 376 nm.  相似文献   

10.
The photoluminescence (PL), electrochemical, and electroluminescence (EL) properties of EuIII complexes, [Eu(cppo)2(tta)3] ( 1 ) and [Eu(cpo)2(tta)3] ( 2 ; TTA=2‐thenoyltrifluoroacetonate) with two carbazole‐based phosphine oxide ligands, 9‐[4‐(diphenylphosphinoyl)phenyl]‐9H‐carbazole (CPPO) and 9‐(diphenylphosphoryl)‐9H‐carbazole (CPO), which have different bipolar structures, donor–π‐spacer–acceptor (D–π–A) or donor–acceptor (D–A) systems respectively, are investigated. The CPPO with D–π–A architecture has improved PL properties, such as higher PL efficiency and more efficient intramolecular energy transfer, than CPO with the D–A architecture. Gaussian simulation proved the bipolar structures and the double‐carrier injection ability of the ligands. The carrier injection abilities of triphenylphosphine oxide, CPO, and CPPO are gradually improved. Notably, the Gaussian and electrochemical investigations indicate that before and after coordination, the carrier injection ability of the ligands show remarkable changes because of the particularity of the D‐π–A and D–A systems. The electrochemical studies demonstrate that coordination induces the electron cloud to migrate from electron‐rich carbazole to electron‐poor diphenylphosphine oxide, and consequently increases the electron‐cloud density on diphenylphosphine oxide, which weakens its ability for electron affinity and induces the elevation of LUMO energy levels of the complexes. Significantly, the π‐spacer in the D–π–A system exhibits a distinct buffer effect on the variation of the electron‐cloud density distribution of the ligand, which is absent in the D–A system. It is demonstrated that the adaptability of the D–π–A systems, especially for coordination, is stronger than that of D–A systems, which facilitates the modification of the complexes by designing multifunctional ligands purposefully. 1 seems favorable as the most efficient electroluminescent EuIII complex with greater brightness, higher efficiencies, and more stable EL spectra than 2 . These investigations demonstrate that the phosphine oxide ligands with D–π–A architecture are more appropriate than those with D–A architecture to achieve multifunctional electroluminescent EuIII complexes.  相似文献   

11.
Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1 ), Gd ( 2 ), and Eu ( 3 )] and {[Ln(αH? PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1′ ), Gd ( 2′ ), and Eu ( 3′ )] have been prepared by reacting LnIII ions with tricarboxylate‐perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC3?) or closed‐shell (αH? PTMTC3?) character, respectively. X‐ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (42.8)?(44.62.85.104) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non‐coordinated guest‐solvent molecules as confirmed by the XRD structure of the guest‐free [Tb(PTMTC)(EtOH)2H2O] and [Tb(αH? PTMTC)(EtOH)2H2O] materials. Accessible voids represent 40 % of the cell volume. Metal‐centered luminescence was observed in TbIII and EuIII coordination polymers 1′ and 3′ , although the LnIII‐ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln–radical} (in 1 and 2 ) and the {radical–radical} exchange interactions (in 3 ) were assessed by comparing the behaviors for the radical‐based coordination polymers 1 – 3 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical–radical} interactions were found in 3 , ferromagnetic {Ln–radical} interactions propagated in the 3D architectures of 1 and 2 .  相似文献   

12.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

13.
Two chelate ligands for europium(III) having minocycline (=(4S,4aS,5aR,12aS)‐4,7‐bis(dimethylamino)‐1,4,4a,5,5a,6,11,12a‐octahydro‐3,10,12,12a‐tetrahydroxy‐1,11‐dioxonaphthacene‐2‐carboxamide; 5 ) as a VIS‐light‐absorbing group were synthesized as possible VIS‐light‐excitable stable Eu3+ complexes for protein labeling. The 9‐amino derivative 7 of minocycline was treated with H6TTHA (=triethylenetetraminehexaacetic acid=3,6,9,12‐tetrakis(carboxymethyl)‐3,6,9,12‐tetraazatetradecanedioic acid) or H5DTPA (=diethylenetriaminepentaacetic acid=N,N‐bis{2‐[bis(carboxymethyl)amino]ethyl}glycine) to link the polycarboxylic acids to minocycline. One of the Eu3+ chelates, [Eu3+(minocycline‐TTHA)] ( 13 ), is moderately luminescent in H2O by excitation at 395 nm, whereas [Eu3+(minocycline‐DTPA)] ( 9 ) was not luminescent by excitation at the same wavelength. The luminescence and the excitation spectra of [Eu3+(minocycline‐TTHA)] ( 13 ) showed that, different from other luminescent EuIII chelate complexes, the emission at 615 nm is caused via direct excitation of the Eu3+ ion, and the chelate ligand is not involved in the excitation of Eu3+. However, the ligand seems to act for the prevention of quenching of the Eu3+ emission by H2O. The fact that the excitation spectrum of [Eu3+(minocycline‐TTHA)] is almost identical with the absorption spectrum of Eu3+ aqua ion supports such an excitation mechanism. The high stability of the complexes of [Eu3+(minocycline‐DTPA)] ( 9 ) and [Eu3+(minocycline‐TTHA)] ( 13 ) was confirmed by UV‐absorption semi‐quantitative titrations of H4(minocycline‐DTPA) ( 8 ) and H5(minocycline‐TTHA) ( 12 ) with Eu3+. The titrations suggested also that an 1 : 1 ligand Eu3+ complex is formed from 12 , whereas an 1 : 2 complex was formed from 8 minocycline‐DTPA. The H5(minocycline‐TTHA) ( 12 ) was successfully conjugated to streptavidin (SA) (Scheme 5), and thus the applicability of the corresponding Eu3+ complex to label a protein was established.  相似文献   

14.
Four salen‐type lanthanide(III) coordination polymers [LnH2L(NO3)3(MeOH)x]n [Ln = La ( 1 ), Ce ( 2 ), Sm ( 3 ), Gd ( 4 )] were prepared by reaction of Ln(NO3)3 · 6H2O with H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine]. Single‐crystal X‐ray diffraction analysis revealed that H2L effectively functions as a bridging ligand forming a series of 1D chain‐like polymers. The solid‐state fluorescence spectra of polymers 1 and 2 emit single ligand‐centered green fluorescence, whereas 3 exhibits typical red fluorescence of SmIII ions. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of GdIII complex 4 . The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

15.
The salen‐type ligand H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine] was utilized for the synthesis of two lanthanide(III) coordination polymers [LnH2L(NO3)3MeOH]n [Ln = Eu ( 1 ) and Ln = Lu ( 2 )]. The single‐crystal X‐ray diffraction analyses of 1 and 2 revealed that they are isomorphous and exhibit one‐dimension neutral structure, in which H2L effectively functions as a bridging ligand and give rise to a chain‐like polymer. The luminescent properties of polymers in solid state and in solution were investigated and 1 exhibits typical red luminescence of EuIII ions in solid state and dichloromethane solution and 2 emits the ligand‐centered blue luminescence. The energy transfer mechanisms in these luminescent lanthanide polymers were described through calculation of the lowest triplet level of ligand H2L.  相似文献   

16.
Six two‐dimensional (2D) coordination polymers (CPs), namely, poly[{μ5‐3,3‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ6O1:O1′:O3,O3′:O5:O5′}bis(N,N‐dimethylformamide‐κO)lanthanide(III)], [Ln(C21H11O8)(C3H7NO)2]n, with lanthanide/Ln = cerium/Ce for CP1 , praseodymium/Pr for CP2 , neodymium/Nd for CP3 , samarium/Sm for CP4 , europium/Eu for CP5 and gadolinium/Gd for CP6 , have been prepared by solvothermal methods using the ligand 3,3′‐[(5‐carboxy‐1,3‐phenylene)bis(oxy)]dibenzoic acid (H3cpboda) in the presence of Ln(NO3)3. The complexes were characterized by single‐crystal X‐ray and powder diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis (TGA). All the structures of this family of lanthanide CPs are isomorphous with the triclinic space group P and reveal that they have the same 2D network based on binuclear LnIII units, which are further extended via interlayer C—H…π interactions into a three‐dimensional supramolecular structure. The carboxylate groups of the cpboda3? ligands link adjacent LnIII ions and form binuclear [Ln2(RCOO)4] secondary building units (SBUs), in which each binuclear LnIII SBU contains four carboxylate groups from different cpboda3? ligands. Moreover, with the increase of the rare‐earth Ln atomic radius, the dihedral angles between the aromatic rings gradually increase. Magnetically, CP6 shows weak antiferromagnetic coupling between the GdIII ions. The solid‐state luminescence properties of CP2 , CP5 and CP6 were examined at ambient temperature and CP5 exhibits characteristic red emission bands derived from the Eu3+ ion (CIE 0.53, 0.31), with luminescence quantum yields of 22%. Therefore, CP5 should be regarded as a potential optical material.  相似文献   

17.
We report the synthesis of the 2,2′‐[2,5‐bis(carboxymethoxy)‐1,4‐phenylene]diacetic acid (TALH4) ligand and the structures of its adducts with ammonium, namely diammonium 2,2′‐[2,5‐bis(carboxymethyl)‐1,4‐phenylenedioxy]diacetate, 2NH4+·C14H12O102−, (I), lanthanum, namely poly[[aquabis[μ4‐2,2′‐(2‐carboxylatomethyl‐5‐carboxymethyl‐1,4‐phenylenedioxy)diacetato]dilanthanum(III)] monohydrate], {[La2(C14H11O10)2(H2O)]·H2O}n, (II), and zinc cations, namely poly[[{μ4‐2,2′‐[2,5‐bis(carboxymethyl)‐1,4‐phenylenedioxy]diacetato}zinc(II)] trihydrate], {[Zn(C14H12O10)]·3H2O}n, (III), and poly[[diaqua(μ2‐4,4′‐bipyridyl){μ4‐2,2′‐[2,5‐bis(carboxymethyl)‐1,4‐phenylenedioxy]diacetato}dizinc(II)] dihydrate], {[Zn2(C14H10O10)(C10H8N2)(H2O)2]·2H2O}n, (IV), the formation of all four being associated with deprotonation of TALH4. Adduct (I) is a diammonium salt of TALH22−, with the ions located on centres of crystallographic inversion. Its crystal structure reveals a three‐dimensional hydrogen‐bonded assembly of the component species. Reaction of TALH4 with lanthanum trinitrate hexahydrate yielded a two‐dimensional double‐layer coordination polymer, (II), in which the LaIII cations are nine‐coordinate. With zinc dinitrate hexahydrate, TALH4 forms 1:1 two‐dimensional coordination polymers, in which every ZnII cation is linked to four neighbouring TALH22− anions and each unit of the organic ligand is coordinated to four different tetrahedral ZnII cation connectors. The crystal structure of this compound accommodates molecules of disordered water at the interface between adjacent polymeric layers to give (III), and it has been determined with low precision. Another polymer assembly, (IV), was obtained when zinc dinitrate hexahydrate was reacted with TALH4 in the presence of an additional 4,4′‐bipyridyl ligand. In the crystal structure of (IV), the bipyridyl and TAL4− entities are located on two different inversion centres. The ternary coordination polymers form layered arrays with corrugated surfaces, with the ZnII cation connectors revealing a tetrahedral coordination environment. The two‐dimensional polymers in (II)–(IV) are interconnected with each other by hydrogen bonds involving the metal‐coordinated and noncoordinated molecules of water. TALH4 is doubly deprotonated, TALH22−, in (I) and (III), triply deprotonated, viz. TALH3−, in (II), and quadruply deprotonated, viz. TAL4−, in (IV). This report provides the first structural characterization of TALH4 (in deprotonated form) and its various supramolecular adducts. It also confirms the potential utility of this tetraacid ligand in the formulation of coordination polymers with metal cations.  相似文献   

18.
Herein, magnetic circularly polarized luminescence (CPL) (MCPL) spectroscopy was conducted to analyze an EuIII(hfa)3 complex with three chiral PIII-ligands. Resultantly, (R)-chirality luminophores with S-up orientation and (S)-chirality luminophores with N-up orientation were observed to possess symmetrical mirror image spectra, i. e., they were enantiomers. Similarly, the (R)-chirality luminophores with N-up orientation and the (S)-chirality luminophores with S-up orientation were also enantiomers. Contrarily, (R)-S-up and (S)-S-up were diastereomers and did not possess a mirror-image relationship. Likewise, (R)-N-up and (S)-N-up were diastereomers. The J-dependency of gMCPL and gCPL datasets suggested that the N-up/S-up external magnetic field, with the aid of chiral PIII-ligands, increased the gMCPL values by two- to sixteen-fold and modulated the gMCPL signs at J=1–4. Additionally, the origins of the nonideal mirror-symmetric CPL and MCPL spectral characteristics of EuIII(hfa)3 with three chiral PIII-ligands were discussed in terms of parity (space-inversion, P)-symmetry, time-reversal (T)-symmetry, and PT-symmetry laws.  相似文献   

19.
Separation processes based on room temperature ionic liquids (RTIL) and electrochemical refining are promising strategies for the recovery of lanthanides from primary ores and electronic waste. However, they require the speciation of dissolved elements to be known with accuracy. In the present study, Eu coordination and EuIII/EuII electrochemical behavior as a function of water content in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]) was investigated using UV–visible spectrophotometry, time-resolved laser fluorescence spectroscopy, electrochemistry, and X-ray absorption spectroscopy. In situ measurements were performed in spectroelectrochemical cells. Under anhydrous conditions, EuIII and EuII were complexed by NTf2, forming Eu−O and Eu−(N,O) bonds with the anion sulfoxide function and N atoms, respectively. This complexation resulted in a greater stability of EuII, and in quasi-reversible oxidation–reduction with an E0’ potential of 0.18 V versus the ferrocenium/ferrocene (Fc+/Fc) couple. Upon increasing water content, progressive incorporation of water in the EuIII coordination sphere occurred. This led to reversible oxidation–reduction reactions, but also to a decrease in stability of the +II oxidation state (E0’=−0.45 V vs. Fc+/Fc in RTIL containing 1300 mm water).  相似文献   

20.
The lanthanide complex [Eu3(8‐HQCA)3(COOH)(OH)2(H2O)3]n · nH2O (8‐HQCA = 8‐hydroxyquinoline‐7‐carboxylic acid) was synthesized and characterized. Single‐crystal X‐ray diffraction shows that the trinuclear structures are linked by ligands to form 2D layers. The results of DFT calculation shows that energy can be transferred effectively from the ligand to EuIII ions. A series of heteronuclear complexes {[(Eu1–xYx)3(8‐HQCA)3(COOH) (OH)2(H2O)3]n · nH2O (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)} were synthesized and their luminescent properties were studied. The results showed that the doping of YIII ions could change the fluorescent intensity of the EuIII complex, but could not change their positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号