首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mononuclear Mn(I) pincer complex [Mn(Ph2PCH2SiMe2)2NH(CO)2Br] was disclosed to catalyze the pinacolborane (HBpin)-based CO2 hydroboration reaction. Density functional calculations were conducted to reveal the reaction mechanism. The calculations showed that the reaction mechanism could be divided into four stages: (1) the addition of HBpin to the unsaturated catalyst C1 ; (2) the reduction of CO2 to HCOOBpin; (3) the reduction of HCOOBpin to HCHO; (4) the reduction of HCHO to CH3OBpin. The activation of HBpin is the ligand-assisted addition of HBpin to the unsaturated Mn(I)-N complex C1 generated by the elimination of HBr from the Mn(I) pincer catalyst. The sequential substrate reductions share a common mechanism, and every hydroboration commences with the nucleophilic attack of the Mn(I)-H to the electron-deficient carbon centers. The hydride transfer from Mn(I) to HCOOBpin was found to be the rate-limiting step for the whole catalytic reaction, with a total barrier of 27.0 kcal/mol, which fits well with the experimental observations at 90 °C. The reactivity trend of CO2, HCOOBpin, HCHO, and CH3OBpin was analyzed through both thermodynamic and kinetic analysis, in the following order, namely HCHO>CO2>HCOOBpin≫CH3OBpin. Importantly, the very high barrier for the reduction of CH3OBpin to form CH4 reconciles with the fact that methane was not observed in this catalytic reaction.  相似文献   

2.
Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2CH2PtBu2)2}], [RuCl{N(CHCHPtBu2)(CH2CH2PtBu2)}], and [RuCl{N(CHCHPtBu2)2}], in which the ruthenium(II) ions are in the extremely rare square‐planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low‐lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non‐magnetic ground states arise for the two intermediate‐spin complexes owing to unusually large zero‐field splitting (D>+200 cm?1). The change in ground state electronic configuration is attributed to tailored pincer ligand‐to‐metal π‐donation within the PNP ligand series.  相似文献   

3.
Pincer ligated coordination complexes of base metals have shown remarkable catalytic activity for hydrogenation/dehydrogenation of CO2. The recently reported MeN[CH2CH2(iPr2)]2Co(I)PNP-pincer complex was shown to exhibit substantially higher catalytic activity in comparison to the corresponding catalyst, HN[CH2CH2(iPr2)]2Co(I)PNP, bearing a secondary nitrogen center on the pincer ligand. Here, we computationally investigate the mechanisms for hydrogenation of CO2 to formate catalyzed by these two Co-PNP complexes to explain how such a small structural difference could have a sizable impact on their catalytic activity. Plausible hydrogenation routes were examined in details and our findings provide solid support for the experimental observations. Our results reveal that such trends in catalytic activity could be explained from the lower activation barrier for the hydride transfer step upon changing the pincer nitrogen center from secondary to tertiary.  相似文献   

4.
Contributions to the Chemistry of Transition Metal Alkyl Compounds. XXXIV. Synthesis and Properties of 3-(N,N-dialkylamino)propyl Manganese Compounds MnCl2 reacts with lithium organyls of the type R2N(CH2)3Li with formation of definite organomanganese complexes. The pure [(CH3)2N(CH2)3]2Mn, [(C2H5)2N(CH2)3]2Mn, [(CH2)5N(CH2)3]2Mn and the complexes [(CH3)2N(CH2)3]2Mn · LiCl and Li{Mn[(CH2)3N(CH3)2]3} · 1,5 THF were isolated. [(CH3)2N(CH2)3]2Mn · 2 Li(acac) was obtained as a result of reactions of Mn(acac)2 and Mn(acac)3 with the corresponding lithium organyl. The σ-organomanganese(II) derivatives were characterized in detail by elementary analysis, molecular weight determination, ESR- and IR-spectra, conductivity measurements and the magnetic moments.  相似文献   

5.
Metal–ligand cooperation (MLC) plays an important role in catalysis. Systems reported so far are generally based on a single mode of MLC. We report here a system with potential for MLC by both amine–amide and aromatization–dearomatization ligand transformations, based on a new class of phosphino–pyridyl ruthenium pincer complexes, bearing sec‐amine coordination. These pincer complexes are effective catalysts under unprecedented mild conditions for acceptorless dehydrogenative coupling of alcohols to esters at 35 °C and hydrogenation of esters at room temperature and 5 atm H2. The likely actual catalyst, a novel, crystallographically characterized monoanionic de‐aromatized enamido–RuII complex, was obtained by deprotonation of both the N?H and the methylene proton of the N‐arm of the pincer ligand.  相似文献   

6.
Since the first reports in the late 1970s on transition metal complexes containing pincer‐type ligands—named after the particular coordination mode of these ligands—these systems have attracted increasing interest owing to the unusual properties of the metal centers imparted by the pincer ligand. Typically, such a ligand comprises an anionic aryl ring which is ortho,ortho‐disubstituted with heteroatom substituents, for example, CH2NR2, CH2PR2 or CH2SR, which generally coordinate to the metal center, and therefore support the M−C σ bond. This commonly results in a terdentate and meridional coordination mode consisting of two metallacycles which share the M−C bond. Detailed studies of the formation and the properties of a large variety of pincers containing platinum group metal complexes have provided direct access to both a fundamental understanding of a variety of reactions in organometallic chemistry and to a range of new applications of these complexes. The discovery of alkane dehydrogenation catalysts, the mechanistic elucidation of fundamental transformations (for example, C−C bond activation), the construction of the first metallodendrimers for sustainable homogeneous catalysis, and the engineering of crystalline switches for materials processing represent only a few of the many highlights which have emanated from these numerous investigations. This review discusses the synthetic methodologies that are currently available for the preparation of platinum group metal complexes containing pincer ligands and especially emphasizes different applications that have been realized in materials science such as the development and engineering of sensors, switches, and catalysts.  相似文献   

7.
1H NMR studies using a cationic complex with a pyridine-di-imidazolylidene pincer ligand of formula [Rh(CNC)(CO)]+ revealed that this compound showed high binding affinity with coronene in CH2Cl2. The interaction between coronene and the planar RhI complex is established by means of π-stacking interactions. This interaction has a strong impact on the electron-donating strength of the pincer CNC ligand, which is increased significantly, as demonstrated by the shifting of the ν(CO) stretching bands to lower frequencies. The addition of coronene increases the reaction rate of the nucleophilic attack of methyl iodide on the rhodium (I) pincer complex, and also has a positive effect on the performance of the complex as a catalyst in the cycloisomerization of 4-pentynoic acid. These findings highlight the importance of supramolecular interactions for tuning the reactivity and catalytic activity of square-planar metal complexes.  相似文献   

8.
The reactions of Na[Mn(CO)5] or Na[Mn(CO)4(PPh3)] with CH2ClI yield the new chloromethyl complexes Mn(CO)5CH2Cl and Mn(CO)4(PPh3)CH2Cl. Reaction of Na[Re(CO)5] or Na[CpRu(CO)2] with ClCH2OMe yields Re(CO)5CH2Cl and CpRu(CO)2CH2Cl respectively, in addition to the corresponding methoxymethyl complexes (Cp = η5-C5H5). Reaction of CpRu(CO)2CH2OMe with HCl yields the corresponding chloromethyl complex.  相似文献   

9.
Four NHC [CNN] pincer nickel (II) complexes, [iPrCNN (CH2)4‐Ni‐Br] ( 5a ), [nBuCNN (CH2)4‐Ni‐Br] ( 5b ), [iPrCNN (Me)2‐Ni‐Br] ( 6a ) and [nBuCNN (Me)2‐Ni‐Br] ( 6b ), bearing unsymmetrical [C (carbene)N (amino)N (amine)] ligands were synthesized by the reactions of [CNN] pincer ligand precursors 4 with Ni (DME)Cl2 in the presence of Et3N. Complexes 5a and 5b are new and were completely characterized. The transfer hydrogenation of ketones catalyzed by the four pincer nickel complexes were explored. Complexes 5a and 6a have better catalytic activity than 5b and 6b . With a combination of NaOtBu/iPrOH/80 °C and 2% catalyst loading of 5a , 77–98% yields of aromatic alcohols could be obtained.  相似文献   

10.
Pincer‐type palladium complexes are among the most active Heck catalysts. Due to their exceptionally high thermal stability and the fact that they contain PdII centers, controversial PdII/PdIV cycles have been often proposed as potential catalytic mechanisms. However, pincer‐type PdIV intermediates have never been experimentally observed, and computational studies to support the proposed PdII/PdIV mechanisms with pincer‐type catalysts have never been carried out. In this computational study the feasibility of potential catalytic cycles involving PdIV intermediates was explored. Density functional calculations were performed on experimentally applied aminophosphine‐, phosphine‐, and phosphite‐based pincer‐type Heck catalysts with styrene and phenyl bromide as substrates and (E)‐stilbene as coupling product. The potential‐energy surfaces were calculated in dimethylformamide (DMF) as solvent and demonstrate that PdII/PdIV mechanisms are thermally accessible and thus a true alternative to formation of palladium nanoparticles. Initial reaction steps of the lowest energy path of the catalytic cycle of the Heck reaction include dissociation of the chloride ligands from the neutral pincer complexes [{2,6‐C6H3(XPR2)2}Pd(Cl)] [X=NH, R=piperidinyl ( 1 a ); X=O, R=piperidinyl ( 1 b ); X=O, R=iPr ( 1 c ); X=CH2, R=iPr ( 1 d )] to yield cationic, three‐coordinate, T‐shaped 14e? palladium intermediates of type [{2,6‐C6H3(XPR2)2}Pd]+ ( 2 ). An alternative reaction path to generate complexes of type 2 (relevant for electron‐poor pincer complexes) includes initial coordination of styrene to 1 to yield styrene adducts [{2,6‐C6H3(XPR2)2}Pd(Cl)(CH2?CHPh)] ( 4 ) and consecutive dissociation of the chloride ligand to yield cationic square‐planar styrene complexes [{2,6‐C6H3(XPR2)2}Pd(CH2?CHPh)]+ ( 6 ) and styrene. Cationic styrene adducts of type 6 were additionally found to be the resting states of the catalytic reaction. However, oxidative addition of phenyl bromide to 2 result in pentacoordinate PdIV complexes of type [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)]+ ( 11 ), which subsequently coordinate styrene (in trans position relative to the phenyl unit of the pincer cores) to yield hexacoordinate phenyl styrene complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)(CH2?CHPh)]+ ( 12 ). Migration of the phenyl ligand to the olefinic bond gives cationic, pentacoordinate phenylethenyl complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(CHPhCH2Ph)]+ ( 13 ). Subsequent β‐hydride elimination induces direct HBr liberation to yield cationic, square‐planar (E)‐stilbene complexes with general formula [{2,6‐C6H3(XPR2)2}Pd(CHPh?CHPh)]+ ( 14 ). Subsequent liberation of (E)‐stilbene closes the catalytic cycle.  相似文献   

11.
水杨醛苯甲酰腙锰配合物的研究   总被引:2,自引:0,他引:2  
水杨醛苯甲酰腙C_(14)H_(12)O_2N_2(H_2L)常作为三齿配体和金属离子配位,有两种不同配位形式:HL~-(只失去酚羟基质子)和L~(2-)(进一步失去胺基原子)。本文用以合成了下列两种不同价态锰的配合物:Mn(Ⅱ)(HL)_2和Mn(Ⅲ)(HL)L以及Mn(Ⅱ)(HL)(CH_3COO)·1.5H_2O和Mn(Ⅲ)L(CH_3COO)·0.5H_2O,迄今文献中只见Mn(Ⅱ)L和Mn(Ⅲ)LX(X=CH_3COO~-、Cl~-、Br~-)型双核锰配合物的研究报道。  相似文献   

12.
Half‐sandwich manganese methylenephosphonium complexes [Cp(CO)2Mn(η2‐R2P?C(H)Ph)]BF4 were obtained in high yield through a straightforward reaction sequence involving a classical Fischer‐type manganese complex and a secondary phosphine as key starting materials. The addition of various nucleophiles (Nu) to these species took place regioselectively at the double‐bonded carbon center of the coordinated methylenephosphonium ligand R2P+?C(H)Ph to produce the corresponding chiral phosphine complexes [Cp(CO)2Mn(κ1‐R2P? C(H)(Ph)Nu)], from which the phosphines were ultimately recovered as free entities upon simple irradiation with visible light. The synthetic potential of this umpolung approach is illustrated herein by the preparation of novel chiral pincer‐type phosphine–NHC–phosphine ligand architectures.  相似文献   

13.
Synthetic routes towards novel PCP′ pincer ligands were devised. Ligand 1-(Pr2iPOCH2)-3-(Bu2tPCH2)(C6H4) is prepared in a three step synthesis from 1,3-benzenedimethanol and 1-(Pr2iPO)-3-(Bu2tPCH2)(C6H4) is accessible in three steps from 3-hydroxybenzylalcohol. Both their palladium(II) complexes are prepared in good yields but are distinctly different since [PdCl{(C6H3)(OPPr2i)-2-(CH2PBu2t)-6}] possesses two five-membered palladacycles, whereas [PdCl{(C6H3)(CH2PBu2t)-2-(CH2OPPr2i)-6}] is unusual for a pincer complex in that it contains both five- and six-membered palladacycles. Both compounds also represent the first examples of pincer complexes where one donor is a phosphinite and the other is a phosphine. The X-ray structures of these complexes were solved and are discussed. The data reveal that an increase in the metallacycle ring-size leads to changes in bond lengths, but more importantly to significant increases in the bond angles.  相似文献   

14.
Nickel PyBox catalysts promote nucleophilic cyclopropanation reactions using CH2Cl2 as a methylene source and Mn as a stoichiometric reductant. The substrate scope includes a broad range of alkenes bearing electron-withdrawing substituents, including esters, amides, ketones, nitriles, sulfones, phosphonate esters, trifluoromethyl groups, and electron-deficient arenes. Enantioselective cyclopropanations of α,β-unsaturated esters have been developed using chiral PyBox ligands. Mechanistic studies suggest the intermediacy of a (PyBox)Ni=CH2 species, which adds to the alkene by a stepwise [2+2]-cycloaddition/C−C reductive elimination mechanism. DFT models provide a rationale for the nucleophilic character of the nickel carbene and the sense of enantioinduction.  相似文献   

15.
The reaction between tridentate NNO donor hydrazone ligands, (E)-2-cyano-N′-(phenyl(pyridin-2-yl)methylene)acetohydrazide (HL1) and (E)-2-cyano-N′-(1-(pyridin-2-yl)ethylidene)acetohydrazide (HL2), with MnCl2·4H2O in methanol resulted in [Mn(HL1)Cl2(CH3OH)] (1) and [Mn(HL2)Cl2(CH3OH)] (2). Molecular structures of the complexes were determined by single-crystal X-ray diffraction. All of the investigated compounds were further characterized by elemental analysis, FT-IR, TGA, and UV–Vis spectroscopy. These complexes were used as catalysts for olefin oxidation in the presence of tert-butylhydroperoxide (TBHP) as an oxidant. Under similar experimental conditions with equal manganese loading, the presence of [Mn(HL2)Cl2(CH3OH)] (2) resulted in higher conversion than [Mn(HL1)Cl2(CH3OH)] (1).  相似文献   

16.
The complexes [M(CO)4(pyridyl‐CH=N‐CHRCO2R′)] (M = Cr, Mo; R = H, CH3, CH(CH3)2, CH2CH(CH3)2) were obtained by reaction of the Schiff bases from pyridine‐2‐carboxaldehyde and glycine, L‐alanine, L‐valine or L‐leucine esters with the norbornadiene complexes [M(CO)4(nbd)] and were characterized by IR, 1H and 13C NMR and UV‐vis spectra. The deeply colored complexes exhibit solvatochromism.  相似文献   

17.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

18.
The asymmetric PCP pincer ligand [C6H4-1-(CH2PPh2)-3-(CH(CH3)PPh2)] (4) has been synthesized in a facile manner in three simple steps in high yield. Metallation of PCP pincer ligand (4) with [Pd(COD)Cl2] affords complex [PdCl{C6H3-2-(CH2PPh2)-6-(CH(CH3)PPh2)}] (7) in good yield.  相似文献   

19.
《Comptes Rendus Chimie》2007,10(7):573-582
This article provides an overview of the chemistry of monoanionic S–P–S and dianionic S–C–S ligands featuring two phosphinosulfide ligands as pendant groups. These new pincer-type structures are easily assembled from phosphinines and the bis-sulfide derivative of the bis(diphenylphosphino)methane, respectively. Monoanionic S–P–S pincer ligands easily coordinate group 10 and group 9 metal fragments through displacement reactions. Palladium(II) complexes of S–P–S ligands efficiently catalyze cross-coupling processes, allowing the formation of boronic esters and biphenyl derivatives. Rh(I) complexes of S–P–S ligands react in a regioselective way with small molecules (O2, SO2, CS2, MeI) to afford the corresponding Rh(I) or Rh(III) derivatives. S–C–S dianonic ligands, which are readily obtained through a bis-metallation at the central carbon atom of Ph2P(S)CH2P(S)Ph2, react with Pd(II) and Ru(II) precursors to afford new carbene complexes. Samarium and thulium alkylidene complexes of these S–C–S dianionic ligands were synthesized in a similar way. Reaction of the lanthanide derivatives with ketones or aldehydes yields olefinic derivatives through a ‘Wittig-like’ process.  相似文献   

20.
In the current work, two triazine‐based multidentate ligands (H2L1 and H2L2) and their homo‐dinuclear Mn (II), mononuclear Ln (III) and hetero‐dinuclear Mn (II)/Ln (III) (Where Ln: Eu or La) complexes were synthesized and characterized by spectroscopic and analytical methods. Single crystals of a homo‐dinuclear Mn (II) complex {[Mn (HL1)(CH3OH)](ClO4·CH3OH}2 ( 1 ) were obtained and the molecular structure was determined by X‐ray diffraction method. In the structure of the complex, each Mn (II) ion is seven‐coordinate and one of the phenolic oxygen bridges two Mn (II) centre forming a dimeric structure. The UV–Vis. and photoluminescence properties of synthesized ligands and their metal complexes were investigated in DMF solution and the compounds showed emission bands in the UV–Vis. region. The catecholase enzyme‐like activity of the complexes were studied for 3,5‐DTBC → 3,5‐DTBQ conversion in the presence of air oxygen. Homo‐dinuclear Mn (II) complexes ( 1 and 4 ) were found to efficiently catalyse 3,5‐DTBC → 3,5‐DTBQ conversion with the turnover numbers of 37.25 and 35.78 h?1 (kcat), respectively. Mononuclear Eu (III) and La (III) complexes did not show catecholase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号