首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Guanine‐rich sequence motifs, which contain tracts of three consecutive guanines connected by single non‐guanine nucleotides, are abundant in the human genome and can form a robust G‐quadruplex structure with high stability. Herein, by using NMR spectroscopy, we investigate the equilibrium between monomeric and 5′–5′ stacked dimeric propeller‐type G‐quadruplexes that are formed by DNA sequences containing GGGT motifs. We show that the monomer–dimer equilibrium depends on a number of parameters, including the DNA concentration, DNA flanking sequences, the concentration and type of cations, and the temperature. We report on the high‐definition structure of a simple monomeric G‐quadruplex containing three single‐residue loops, which could serve as a reference for propeller‐type G‐quadruplex structures in solution.  相似文献   

3.
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate–DNA conjugates containing the oligonucleotide sequences of G‐quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose–TBA conjugate shows stacking interactions between the carbohydrate and the DNA G‐tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5′‐end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G‐quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G‐quadruplex ligands.  相似文献   

4.
Sequence inversion in G‐rich DNA from 5′→3′ to 3′→5′ exerts a substantial effect on the number of structures formed, while the type of G‐quadruplex fold is in fact determined by the presence of K+ or Na+ ions. The melting temperatures of G‐quadruplexes adopted by oligonucleotides with sequences in the 5′→3′ direction are higher than those of their 3′→5′ counterparts with both KCl and NaCl. CD, UV, and NMR spectroscopy demonstrates the importance of primary sequence for the structural diversity of G‐quadruplexes. The changes introduced by mere sequence reversal of the G‐rich DNA segment have a substantial impact on the polymorphic nature of the resulting G‐quadruplexes and their potential physiological roles. The insights resulting from this study should enable extension of the empirical rules for the prediction of G‐quadruplex topology.  相似文献   

5.
Telomeric G‐quadruplexes have recently emerged as drug targets in cancer research. Herein, we present the first NMR structure of a telomeric DNA G‐quadruplex that adopts the biologically relevant hybrid‐2 conformation in a ligand‐bound state. We solved the complex with a metalorganic gold(III) ligand that stabilizes G‐quadruplexes. Analysis of the free and bound structures reveals structural changes in the capping region of the G‐quadruplex. The ligand is sandwiched between one terminal G‐tetrad and a flanking nucleotide. This complex structure involves a major structural rearrangement compared to the free G‐quadruplex structure as observed for other G‐quadruplexes in different conformations, invalidating simple docking approaches to ligand–G‐quadruplex structure determination.  相似文献   

6.
G‐quadruplex (G4) structures are of general importance in chemistry and biology, such as in biosensing, gene regulation, and cancers. Although a large repertoire of G4‐binding tools has been developed, no aptamer has been developed to interact with G4. Moreover, the G4 selectivity of current toolkits is very limited. Herein, we report the first l ‐RNA aptamer that targets a d ‐RNA G‐quadruplex (rG4). Using TERRA rG4 as an example, our results reveal that this l ‐RNA aptamer, Ap3‐7, folds into a unique secondary structure, exhibits high G4 selectivity and effectively interferes with TERRA‐rG4–RHAU53 binding. Our approach and findings open a new door in further developing G4‐specific tools for diverse applications.  相似文献   

7.
8.
The oligomer d(GCGTG3TCAG3TG3TG3ACGC) with short complementary flanking sequences at the 5′‐ and 3′‐ends was shown to fold into three different DNA G‐quadruplex species. In contrast, a corresponding oligomer that lacks base complementarity between the two overhang sequences folds into a single parallel G‐quadruplex. The three coexisting quadruplex structures were unambiguously identified and structurally characterized through detailed spectral comparisons with well‐defined G‐quadruplexes formed upon the deliberate incorporation of syn‐favoring 8‐bromoguanosine analogues into specific positions of the G‐core. Two (3+1) hybrid structures coexist with the parallel fold and feature a novel lateral–propeller–propeller loop architecture that has not yet been confirmed experimentally. Both hybrid quadruplexes adopt the same topology and only differ in their pattern of antisyn transitions and tetrad stackings.  相似文献   

9.
A conceptually new light‐up nucleic acid fluorescent probe resulting from the conjugation of a coumarin to a naphthalene diimide exhibits a single wavelength emission at 498 nm when free in solution and an additional red/NIR emission when bound to G‐quadruplex DNA. The light‐up response centred at 666 nm is highly specific for quadruplex DNA when compared to duplex DNA or to RNA quadruplexes.  相似文献   

10.
G‐quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G‐quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G‐quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G‐quadruplex binding. We determined two NBTE ‐G‐quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G‐quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G‐quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G‐quadruplex DNA in live cells with NBTE and found G‐quadruplex DNA content in cancer cells is 4‐fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

11.
G‐quadruplexes are four‐stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G‐tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8‐oxoguanine (O), within a single G‐tetrad of a G‐quadruplex was recently shown to lead to the formation of a stable G?G?X?O tetrad. Herein, a judicious introduction of X and O into a human telomeric G‐quadruplex‐forming sequence is shown to reverse the hydrogen‐bond polarity of the modified G‐tetrad while preserving the original folding topology. The control exerted over G‐tetrad polarity by joint X?O modification will be valuable for the design and programming of G‐quadruplex structures and their properties.  相似文献   

12.
A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular‐like G‐quadruplex motif 1 (parallel G‐quadruplex conformation), an intramolecular G‐quadruplex 2 , and a duplex DNA 3 have been designed and developed. The method is based on the concept of template‐assembled synthetic G‐quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G‐quadruplex conformation. Various known G‐quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a π‐stacking binding mode showed a higher binding affinity for intermolecular‐like G‐quadruplexes 1 , whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2 . In addition, the present method has also provided information about the selectivity of ligands for G‐quadruplex DNA over the duplex DNA. A numerical parameter, termed the G‐quadruplex binding mode index (G4‐BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G‐quadruplex 1 against intramolecular G‐quadruplex 2 . The G‐quadruplex binding mode index (G4‐BMI) of a ligand is defined as follows: G4‐BMI=KDintra/KDinter, where KDintra is the dissociation constant for intramolecular G‐quadruplex 2 and KDinter is the dissociation constant for intermolecular G‐quadruplex 1 . In summary, the present work has demonstrated that the use of parallel‐constrained quadruplex topology provides more precise information about the binding modes of ligands.  相似文献   

13.
Recognition and regulation of G‐quadruplex nucleic acid structures is an important goal for the development of chemical tools and medicinal agents. The addition of a bromo‐substituent to the dipyridylphenazine (dppz) ligands in the photophysical “light switch”, [Ru(bpy)2dppz]2+, and the photochemical “light switch”, [Ru(bpy)2dmdppz]2+, creates compounds with increased selectivity for an intermolecular parallel G‐quadruplex and the mixed‐hybrid G‐quadruplex, respectively. When [Ru(bpy)2dppz‐Br]2+ and [Ru(bpy)2dmdppz‐Br]2+ are incubated with the G‐quadruplexes, they have a stabilizing effect on the DNA structures. Activation of [Ru(bpy)2dmdppz‐Br]2+ with light results in covalent adduct formation with the DNA. These complexes demonstrate that subtle chemical modifications of RuII complexes can alter G‐quadruplex selectivity, and could be useful for the rational design of in vivo G‐quadruplex probes.  相似文献   

14.
Guanine‐rich sequences of DNA can assemble into tetrastranded structures known as G‐quadruplexes. It has been suggested that these secondary DNA structures could be involved in the regulation of several key biological processes. In the human genome, guanine‐rich sequences with the potential to form G‐quadruplexes exist in the telomere as well as in promoter regions of certain oncogenes. The identification of these sequences as novel targets for the development of anticancer drugs has sparked great interest in the design of molecules that can interact with quadruplex DNA. While most reported quadruplex DNA binders are based on purely organic templates, numerous metal complexes have more recently been shown to interact effectively with this DNA secondary structure. This Review provides an overview of the important roles that metal complexes can play as quadruplex DNA binding molecules, highlighting the unique properties metals can confer to these molecules.  相似文献   

15.
A knot‐like G‐quadruplex peripheral structure is formed by a 7‐nt DNA sequence DL7 (TGTTGGT), in which six out of its seven nucleobases participate in compact base‐pairing interactions. Here, the solution NMR structure of a 24‐nt DNA oligonucleotide containing the DL7 sequence shows the interaction between a two‐layer anti‐parallel G‐quadruplex core and the peripheral knot‐like structure, including the construction of two sharp turns in the DNA backbone. The formation of this novel structural element highlights the intricate properties of single‐stranded DNA folding in presence of G‐quadruplex‐forming motifs. We demonstrated the compatibility of the DL7 knot‐like structure with various G‐quadruplexes, which could have implications in drug design and DNA engineering.  相似文献   

16.
DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single‐molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G‐quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3′‐ and 5′‐ends of telomeric DNA we demonstrate that the formation of G‐quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.  相似文献   

17.
DNA and RNA G‐quadruplexes (G4) are unusual nucleic acid structures involved in a number of key biological processes. RNA G‐quadruplexes are less studied although recent evidence demonstrates that they are biologically relevant. Compared to DNA quadruplexes, RNA G4 are generally more stable and less polymorphic. Duplexes and quadruplexes may be combined to obtain pure tetrameric species. Here, we investigated whether classical antiparallel duplexes can drive the formation of antiparallel tetramolecular quadruplexes. This concept was first successfully applied to DNA G4. In contrast, RNA G4 were found to be much more unwilling to adopt the forced antiparallel orientation, highlighting that the reason RNA adopts a different structure must not be sought in the loops but in the G‐stem structure itself. RNA antiparallel G4 formation is likely to be restricted to a very small set of peculiar sequences, in which other structural features overcome the formidable intrinsic barrier preventing its formation.  相似文献   

18.
FRET spectroscopy is a promising approach for investigating the dynamics of G‐quadruplex DNA folds and improving the targeting of G‐quadruplexes by potential anticancer compounds. To better interpret such experiments, classical and replica‐exchange molecular dynamics simulations and fluorescence‐lifetime measurements are used to understand the behavior of a range of Cy3‐based dyes attached to the 3′ end of G‐quadruplex DNA. The simulations revealed that the dyes interact extensively with the G‐quadruplex. Identification of preferred dye positions relative to the G‐quadruplex in the simulations allows the impact of dye–DNA interactions on FRET results to be determined. All the dyes show significant deviations from the common approximation of being freely rotating and not interacting with the host, but one of the Cy3 dye analogues is slightly closer to this case.  相似文献   

19.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

20.
Weak C? H???X hydrogen bonds are important stabilizing forces in crystal engineering and anion recognition in solution. In contrast, their quantitative influence on the stabilization of supramolecular polymers or gels has thus far remained unexplored. Herein, we report an oligophenyleneethynylene (OPE)‐based amphiphilic PtII complex that forms supramolecular polymeric structures in aqueous and polar media driven by π–π and different weak C‐H???X (X=Cl, O) interactions involving chlorine atoms attached to the PtII centers as well as oxygen atoms and polarized methylene groups belonging to the peripheral glycol chains. A collection of experimental techniques (UV/Vis, 1D and 2D NMR, DLS, AFM, SEM, and X‐Ray diffraction) demonstrate that the interplay between different weak noncovalent interactions leads to the cooperative formation of self‐assembled structures of high aspect ratio and gels in which the molecular arrangement is maintained in the crystalline state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号