首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incorporation of monatomic 2p ligands into the core of iron–sulfur clusters has been researched since the discovery of interstitial carbide in the FeMo cofactor of Mo‐dependent nitrogenase, but has proven to be a synthetic challenge. Herein, two distinct synthetic pathways are rationalized to install nitride ligands into targeted positions of W‐Fe‐S clusters, generating unprecedented nitride‐ligated iron–sulfur clusters, namely [(Tp*)2W2Fe64‐N)2S6L4]2? (Tp*=tris(3,5‐dimethyl‐1‐pyrazolyl)hydroborate(1?), L=Cl? or Br?). 57Fe Mössbauer study discloses metal oxidation states of WIV2FeII4FeIII2 with localized electron distribution, which is analogous to the mid‐valent iron centres of FeMo cofactor at resting state. Good agreement of Mössbauer data with the empirical linear relationship for Fe–S clusters indicates similar ligand behaviour of nitride and sulfide in such clusters, providing useful reference for reduced nitrogen in a nitrogenase‐like environment.  相似文献   

2.
An unprecedented, super oxidized all‐ferric iron–sulfur cubanoid cluster with all terminal thiolates, Fe4S4(STbt)4 ( 3 ) [Tbt=2,4,6‐tris{bis(trimethylsilyl)methyl}phenyl], has been isolated from the reaction of the bis‐thiolate complex Fe(STbt)2 ( 2 ) with elemental sulfur. This cluster 3 has been characterized by X‐ray crystallography, zero‐field 57Fe Mössbauer spectroscopy, cyclic voltammetry, and other relevant physico‐chemical methods. Based on all the data, the electronic ground state of the cluster has been assigned to be Stot=0.  相似文献   

3.
The two new compounds [Fe(tren)]FeSbS4 ( 1 ) (tren = tris(2‐aminoethyl)amine) and [Fe(dien)2]Fe2Sb4S10 ( 2 ) (dien = diethylendiamine) were prepared under solvothermal conditions and represent the first thioantimonates(III) with iron cations integrated into the anionic network. In both compounds Fe3+ is part of a [2FeIII‐2S] cluster which is often found in ferredoxines. In addition, Fe2+ ions are present which are surrounded by the organic ligands. In ( 1 ) the Fe2+ ion is also part of the thioantimonate(III) network whereas in ( 2 ) the Fe2+ ion is isolated. In both compounds the primary SbS3 units are interconnected into one‐dimensional chains. The mixed‐valent character of [Fe(tren)]FeSbS4 was unambiguously determined with Mössbauer spectroscopy. Both compounds exhibit paramagnetic behaviour and for ( 1 ) a deviation from linearity is observed due to a strong zero‐field splitting. Both compounds decompose in one single step.  相似文献   

4.
The tris(2-chloromethyl-4-oxo-4H-pyran-5-olato-κ2O5,O4)iron(III), [Fe(kaCl)3], has been synthesized and characterized by the crystal structure analysis, magnetic susceptibility measurements, Mössbauer, and EPR spectroscopic methods. The X-ray single crystal analysis of [Fe(kaCl)3] revealed a mer isomer. The magnetic susceptibility measurements indicated the paramagnetic character in the temperature range of 2 K–298 K. The EPR and Mössbauer spectroscopy confirmed the presence of an iron center in a high-spin state. Additionally, the temperature-independent Mössbauer magnetic hyperfine interactions were observed down to 77 K. These interactions may result from spin–spin relaxation due to the interionic Fe3+ distances of 7.386 Å.  相似文献   

5.
A disk‐shaped [FeIII7(Cl)(MeOH)63‐O)3(μ‐OMe)6 (PhCO2)6]Cl2 complex with C3 symmetry has been synthesised and characterised. The central tetrahedral FeIII is 0.733 Å above the almost co‐planar FeIII6 wheel, to which it is connected through three μ3‐oxide bridges. For this iron‐oxo core, the magnetic susceptibility analysis proposed a Heisenberg–Dirac–van Vleck (HDvV) mechanism that leads to an intermediate spin ground state of S=7/2 or 9/2. Within either of these ground state manifolds it is reasonable to expect spin frustration effects. The 57Fe Mössbauer (MS) analysis verifies that the central FeIII ion easily aligns its magnetic moment antiparallel to the externally applied field direction, whereas the other six peripheral FeIII ions keep their moments almost perpendicular to the field at stronger fields. This unusual canted spin structure reflects spin frustration. The small linewidths in the magnetic Mössbauer spectra of polycrystalline samples clearly suggest an isotropic exchange mechanism for realisation of this peculiar spin topology.  相似文献   

6.
For well over 20 years, μ‐oxo‐diiron corroles, first reported by Vogel and co‐workers in the form of μ‐oxo‐bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s?1, ΔEQ 2.35 mm s?1), have been thought of as comprising a pair antiferromagnetically coupled low‐spin FeIV centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)‐oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not FeIV but intermediate‐spin FeIII coupled to a corrole.2?. The intramolecular spin couplings in {Fe[TPC]}2(μ‐O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg–Dirac–van Vleck spin Hamiltonian H=JFe–corrole(SFe?Scorrole)+JFe–Fe′(SFe?SFe′)+JFe′–corrole(SFe′?Scorrole′), which yielded JFe–corrole=JFe′–corrole′=0.355 eV (2860 cm?1) and JFe–Fe′=0.068 eV (548 cm?1). The unexpected stability of μ‐oxo‐diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence.  相似文献   

7.
One‐electron reduction of a pyrazolate‐bridged triangular Fe33‐O) core induces a cascade wherein all three metal centers switch from high‐spin Fe3+ to low‐spin Fe2.66+. This hypothesis is supported by spectroscopic data (1H‐NMR, UV‐vis‐NIR, infra‐red, 57Fe‐Mössbauer, EPR), X‐ray crystallographic characterization of the cluster in both oxidation states and also density functional theory. The reduction induces substantial contraction in all bond lengths around the metal centers, along with diagnostic shifts in the spectroscopic parameters. This is, to the best of our knowledge, the first example of a one‐electron redox event causing concerted change in multiple iron centers.  相似文献   

8.
Non‐precious Fe/N co‐modified carbon electrocatalysts have attracted great attention due to their high activity and stability in oxygen reduction reaction (ORR). Compared to iron‐free N‐doped carbon electrocatalysts, Fe/N‐modified electrocatalysts show four‐electron selectivity with better activity in acid electrolytes. This is believed relevant to the unique Fe–N complexes, however, the Fe–N structure remains unknown. We used o,m,p‐phenylenediamine as nitrogen precursors to tailor the Fe–N structures in heterogeneous electrocatalysts which contain FeS and Fe3C phases. The electrocatalysts have been operated for 5000 cycles with a small 39 mV shift in half‐wave potential. By combining advanced electron microscopy and Mössbauer spectroscopy, we have identified the electrocatalytically active Fe–N6 complexes (FeN6, [FeIII(porphyrin)(pyridine)2]). We expect the understanding of the FeN6 structure will pave the way towards new advanced Fe–N based electrocatalysts.  相似文献   

9.
Iron gallates with iron in the oxidation states Fe2+ and Fe3+ were prepared and studied by Mössbauer spectroscopy, X‐ray diffraction, and IR spectroscopy. FeIII 3,4,5‐trihydroxybenzoate (gallate) Fe(C7O5H4) · 2H2O, whose structure was first determined by Wunderlich, was obtained by the reaction of gallic acid and metallic iron or by oxidation of the FeII gallate, which was obtained by the reaction of ferrous sulfate with 3,4,5‐trihydroxybezoic acid (gallic acid) under anoxic conditions. Trials to reproduce the hydrothermal preparation method of Feller and Cheetham show that the result depends crucially on the free gas volume in the reaction vessel. If there is no free volume one obtains the same FeIII gallate as in the other preparation methods. With a large free volume another compound was found to form whose composition and structure could not be determined. It could be specified only by Mössbauer spectroscopy. FeIII gallate, the FeII gallate, and the new phase show magnetic ordering at liquid helium temperature.  相似文献   

10.
Tris(2-hydroxymethyl-4-oxo-4H-pyran-5-olato-κ2O5,O4)iron(III) [Fe(ka)3], has been characterised by magnetic susceptibility measurements Mössbauer and EPR spectroscopy. The crystal structure of [Fe(ka)3] has been determined by powder X-ray diffraction analysis. Magnetic susceptibility and EPR measurements indicated a paramagnetic high-spin iron centre. Mössbauer spectra revealed the presence of magnetic hyperfine interactions that are temperature-independent down to 4.2?K. The interionic Fe3+ distance of 7.31?Å suggests spin-spin relaxation as the origin of these interactions.  相似文献   

11.
The nitrogenase MoFe protein contains two different FeS centers, the P-cluster and the iron–molybdenum cofactor (FeMo-co). The former is a [Fe8S7] center responsible for conveying electrons to the latter, a [MoFe7S9C-(R)-homocitrate] species, where N2 reduction takes place. NifB is arguably the key enzyme in FeMo-co assembly as it catalyzes the fusion of two [Fe4S4] clusters and the insertion of carbide and sulfide ions to build NifB-co, a [Fe8S9C] precursor to FeMo-co. Recently, two crystal structures of NifB proteins were reported, one containing two out of three [Fe4S4] clusters coordinated by the protein which is likely to correspond to an early stage of the reaction mechanism. The other one was fully complemented with the three [Fe4S4] clusters (RS, K1 and K2), but was obtained at lower resolution and a satisfactory model was not obtained. Here we report improved processing of this crystallographic data. At odds with what was previously reported, this structure contains a unique [Fe8S8] cluster, likely to be a NifB-co precursor resulting from the fusion of K1- and K2-clusters. Strikingly, this new [Fe8S8] cluster has both a structure and coordination sphere geometry reminiscent of the fully reduced P-cluster (PN-state) with an additional μ2-bridging sulfide ion pointing toward the RS cluster. Comparison of available NifB structures further unveils the plasticity of this protein and suggests how ligand reorganization would accommodate cluster loading and fusion in the time-course of NifB-co synthesis.

The K-cluster of NifB as a key intermediate in the synthesis of the nitrogenase active site supports [Fe4S4] cluster fusion occurs before carbide and sulfide insertion and displays ligand spatial arrangement reminiscent to that of the P-cluster.  相似文献   

12.
Spinel iron oxide (Fe3O4-γ-Fe2O3) particles were supported on microbeads of silica gel by the calcination of the silica gel base adsorbing citric acid and Fe3+ ions. The X-ray diffraction patterns and the57Fe Mössbauer spectra measured for the spinel iron oxide indicated that the particle size of the oxide was regulated by the mean pore diameter (4–82 nm) of the silica gel support employed. In the case of α-Fe2O3 particles prepared by using the same silica gel beads, it was revealed by the Mössbauer spectra and the electron micrographs that there were relatively large particles of the oxide on the surface of the beads, in addition to the particles in the silica gel micropores.  相似文献   

13.
Perovskite‐type phases SrFe1–xTixO3–y with 0.1 ≤ x ≤ 0.7 have been prepared from the oxides, and, in order to reach high oxygen contents and FeIV fractions, annealed at oxygen pressures of 60 MPa. The materials were characterised by powder x‐ray and neutron diffraction, 57Fe Mössbauer spectroscopy, and magnetic susceptibility measurements. All samples of the series crystallise in a cubic perovskite structure and reveal considerable oxygen deficiency. The Mössbauer parameters suggest that for x = 0.1, where the FeIV fraction is about 90%, the itinerant electronic state of SrFeO3 is essentially retained. In materials with larger x increasing amounts of TiIV and FeIII ions lead to a stronger localisation of the σ* (Fe 3 d – O 2 p) electrons. There is no evidence for a charge disproportionation of FeIV in any of the materials. Magnetic susceptibility measurements show a divergence of zero‐field cooled and field‐cooled data below a temperature Tm and deviations from Curie‐Weiss behaviour above Tm. The data are indicative of spin‐glass behaviour due to disorder and competing exchange interactions.  相似文献   

14.
Ferrous gluconate Fe(C6H11O7)2·2H2O was investigated by means of57Fe (14.4 keV)-Mössbauer spectroscopy and thermogravimetry. The Mössbauer study was performed in the temperature range 80 to 423 K. It was found that Fe2+ occupies two distinctly different Mössbauer sites in the hydrated phase and a single site in the product of the thermal treatment. All samples were contaminated by some amount of Fe3+. A significant oxidation occurs during thermal treatment (about 378 K) at least for the samples exposed to the air. No Goldanskii-Karyagin effect has been detected, in contrast to the previous claim. It has to be noted that the ferrous gluconate is often used as the iron containing component of drugs used in the treatment of anaemia.  相似文献   

15.
The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states “+3”. An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration (“Cu2+-O-” state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O(L) → Fe4+ + O2−, which transforms “Fe3+” into “Fe4+” state. The experimental spectra in the entire temperature range 77–300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.  相似文献   

16.
Distribution and Valence of the Cations in Spinel Systems with Iron and Chromium. III. Lattice Constants, Mössbauer Spectra, and Seebeck Coefficients of the Solid Solution ZnFeCrO4? Fe2CrO4 For the spinel system Zn1–x2+Fex–λ2+Feλ3+(Feλ2+ · Fe1?λ3+ Cr3+)O4 λ has been determined by lattice constants and ionic distances: λ = 0 in the region 0 ? x ? 0.3; in the region 0.3 < x ? 1 λ increases linearly to 0.44. Mössbauer spectra between x = 0 and x = 0.6 confirm this distribution. All spinels are n-type hopping conductors mainly conducting on the octahedral sites.  相似文献   

17.
The precursor [FeIII(L)Cl (L = N,N′-bis(2′-hydroxy-3′-methyl-benzyliden)-1,7-diamino-4-azaheptane) is combined with [Mo(CN)8]4? yields a star shaped nona-nuclear cluster, [MoIV{(CN)FeIII(L)}8]Cl4. This Fe8Mo molecule is a high-spin system at room temperature. On cooling to 20 K some of the iron(III) centres in the molybdenum(IV)-star switch to the low-spin state as proven by Mössbauer spectroscopy. This molecule was deposited on TiO2 nanowires by electrostatic interactions between the cluster cations and the surface functionalized titanium oxide nanowire. The synthesis and surface binding of the multistable molecular switch was demonstrated using IR and UV–Vis spectroscopy (high-resolution) transmission electron microscopy ((HR)TEM) and Mössbauer spectroscopy. High- and low-temperature Mössbauer spectra indicate that the spin state transition of the free cluster molecules is preserved after surface binding. The above results emphasize the possibility of fabricating molecule-based low-dimensional structures by using traditional bottom-up approaches based on the electrostatic interaction between the cluster cations and polymer functionalized nanowires. These results can be generalized for the application to both charged and non-charged molecules.  相似文献   

18.
The new calcium iron iridium hydrogarnet Ca3(Ir2–xFex)(FeO4)2–x(H4O4)1+x (0 ≤ x ≤ 1) was obtained by hydrothermal synthesis under strongly oxidizing alkaline conditions. The compound adopts a garnet‐like crystal structure and crystallizes in the acentric cubic space group I4 3d (no. 220) with a = 12.5396(6) Å determined at T = 100 K for a crystal with a refined composition Ca3(Ir1.4Fe0.6)(FeO4)1.4(O4H4)1.6. Iridium and iron statistically occupy the octahedrally coordinated metal position, the two crystallographically independent tetrahedral sites are partially occupied by iron. Hydroxide groups are found to cluster as hydrogarnet defects, i.e. partially substituting oxide anions around the empty tetrahedral metal sites. The presence of hydroxide ions was confirmed by infrared spectroscopy and the hydrogen content was quantified by carrier gas hot extraction; the overall composition was verified by energy dispersive X‐ray spectroscopy. The structure model is supported by 57Fe‐Mössbauer spectroscopic data evidencing different Fe sites and a magnetic ordering of the octahedral iron sublattice at room temperature. The thermal decomposition proceeds via three steps of water loss and results in Ca2Fe2O5, Fe2O3 and Ir. Mössbauer and magnetization data suggest magnetic order at ambient temperature with complex magnetic interactions.  相似文献   

19.
Although the intercalation of Fe3+ into layered phyllosicilicates—especially into smectites—attracted much attention in the past two decades, the information about Fe2+ loaded phyllosilicates is sparse. Here we present an investigation of the Fe2+ exchanged vermiculites from Santa Olalla and Ojén (Andalusia, Spain) by means of Mössbauer spectroscopy. The room temperature Mössbauer spectra are very similar to those of the starting compounds (Na forms) except for a decrease of the contribution of structural Fe3+ and a concomitant increase of the contribution of Fe2+ sites, indicating an internal redox process. The extent of this redox reaction is different for the two vermiculites. Thus, the intercalated Fe2+ acts as an electron mediator from the external medium to the structural Fe3+ ions. A new component attributable to intercalated Fe2+ is practically invisible in the room temperature Mössbauer spectra, but increases strongly and continuously during cooling to 4.2 K, where it is the dominant feature of the Mössbauer patterns. At 4.2 K, its quadruple splitting amounts to 3.31 mm/s, which is in excellent agreement with the quadrupole slitting of Fe2+ coordinated to six water molecules in a highly symmetric octahedral arrangement. The strong decrease of the Mössbauer–Lamb factor of this component with increasing temperature indicates a weak bonding of the Fe2+ in the interlayer space.  相似文献   

20.
A Debye temperature θD of 378 (±5K) has been obtained by applying a simplified Debye model to the57Fe Mössbauer spectra of 60CaO·39Ga2O3·57Fe2O3 glass. The θD value is comparable to those (280–580 K) obtained so far in several oxide glasses, glass-ceramics, and ceramics in which Mössbauer atoms are covalently bonded to oxygen atoms and play a role of network former. It proves that Fe(III) atoms occupy the substitutional sites of Ga(III) constituting distorted GaO4 tetrahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号