首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex hollow structures of transition metal oxides, especially mixed metal oxides, could be promising for different applications such as lithium ion batteries. However, it remains a great challenge to fabricate well‐defined hollow spheres with multiple shells for mixed transition metal oxides. Herein, we have developed a new “penetration–solidification–annealing” strategy which can realize the synthesis of various mixed metal oxide multi‐shelled hollow spheres. Importantly, it is found that multi‐shelled hollow spheres possess impressive lithium storage properties with both high specific capacity and excellent cycling stability. Specifically, the carbon‐coated CoMn2O4 triple‐shelled hollow spheres exhibit a specific capacity of 726.7 mA h g?1 and a nearly 100 % capacity retention after 200 cycles. The present general strategy could represent a milestone in design and synthesis of mixed metal oxide complex hollow spheres and their promising uses in different areas.  相似文献   

2.
α‐NiS and β‐NiS hollow spheres were successfully synthesized via the Kirkendall effect under different hydrothermal conditions. The obtained α‐NiS and β‐NiS hollow spheres were evaluated as electrode materials for supercapacitors. Importantly, the α‐NiS hollow sphere electrode has a large specific capacitance (562.3 F g?1 at 0.60 A g?1) and good cycling property (maintaining about 97.5 % at 2.4 A g?1 after 1000 cycles). Furthermore, the as‐prepared α‐NiS and β‐NiS hollow spheres were successfully applied to construct electrochemical glucose sensors. Especially, the α‐NiS hollow spheres exhibit a good sensitivity (155 μA mM?1 cm?2), low detection limit (0.125 μM ), and a wide linear range.  相似文献   

3.
Highly uniform Mo–glycerate solid spheres are synthesized for the first time through a solvothermal process. The size of these Mo–glycerate spheres can be easily controlled in the range of 400–1000 nm by varying the water content in the mixed solvent. As a precursor, these Mo–glycerate solid spheres can be converted into hierarchical MoS2 hollow nanospheres through a subsequent sulfidation reaction. Owing to the unique ultrathin subunits and hollow interior, the as‐prepared MoS2 hollow nanospheres exhibit appealing performance as the anode material for lithium‐ion batteries. Impressively, these hierarchical structures deliver a high capacity of about 1100 mAh g?1 at 0.5 A g?1 with good rate retention and long cycle life.  相似文献   

4.
Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template‐free microwave‐assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self‐transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium‐ion batteries, the V2O5 hollow spheres display a diameter‐dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg?1 at a current density of 50 mAg?1, and are better than the corresponding solid spheres and nanorod assemblies.  相似文献   

5.
TiO2?x with well‐controlled hollow multi‐shelled structures (HoMSs) were designed and synthesized, via a sequential templating approach (STA), to act as sulfur carrier materials. They were explored as physico‐chemical encapsulation materials. Particularly, the sulfur cathode based on triple‐shelled TiO2?x HoMSs delivered a specific capacity of 903 mAh g?1 with a capacity retention of 79 % at 0.5 C and a Coulombic efficiency of 97.5 % over 1000 cycles. The outstanding electrochemical performance is attributed to better spatial confinement and integrated conductivity of the intact triple‐shell that combine the features of physico‐chemical adsorption, short charge transfer path along with mechanical strength.  相似文献   

6.
A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen‐doped hollow carbon shells (NHCSs@MnO2), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m2g?1) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2, the composite shows a high specific capacitance of 306 F g?1, good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g?1. More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g?1 at 0.5 A g?1 and 78.5 F g?1 at 10 A g?1) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg?1 at a power density of 408 W kg?1, and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g?1 after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy‐storage systems.  相似文献   

7.
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples.  相似文献   

8.
Precisely carving of multi‐shelled manganese–cobalt oxide hollow dodecahedra (Co/Mn‐HD) with shell number up to three is achieved by a controlled calcination of the Mn‐doped zeolitic imidazolate framework ZIF‐67 precursor (Co/Mn‐ZIF). The unique multi‐shelled and polycrystalline structure not only provides a very large electrochemically active surface area (EASA), but also enhances the structural stability of the material. The residual C and N in the final structures might aid stability and increase their conductivity. When used in alkaline rechargeable battery, the triple‐shelled Co/Mn‐HD exhibits high electrochemical performance, reversible capacity (331.94 mAh g?1 at 1 Ag?1), rate performance (88 % of the capacity can be retained with a 20‐fold increase in current density), and cycling stability (96 % retention over 2000 cycles).  相似文献   

9.
Hierarchical and hollow nanostructures have recently attracted considerable attention because of their fantastic architectures and tunable property for facile lithium ion insertion and good cycling stability. In this study, a one‐pot and unusual carving protocol is demonstrated for engineering hollow structures with a porous shell. Hierarchical TiO2 hollow spheres with nanosheet‐assembled shells (TiO2 NHS) were synthesized by the sequestration between the titanium source and 2,2′‐bipyridine‐5,5′‐dicarboxylic acid, and kinetically controlled etching in trifluoroacetic acid medium. In addition, annealing such porous nanostructures presents the advantage of imparting carbon‐doped functional performance to its counterpart under different atmospheres. Such highly porous structures endow very large specifics surface area of 404 m2 g?1 and 336 m2 g?1 for the as‐prepared and calcination under nitrogen gas. C/TiO2 NHS has high capacity of 204 mA h g?1 at 1 C and a reversible capacity of 105 mA h g?1 at a high rate of 20 C, and exhibits good cycling stability and superior rate capability as an anode material for lithium‐ion batteries.  相似文献   

10.
Multi‐wall Sn/SnO2@carbon hollow nanofibers evolved from SnO2 nanofibers are designed and programable synthesized by electrospinning, polypyrrole coating, and annealing reduction. The synthesized hollow nanofibers have a special wire‐in‐double‐wall‐tube structure with larger specific surface area and abundant inner spaces, which can provide effective contacting area of electrolyte with electrode materials and more active sites for redox reaction. It shows excellent cycling stability by virtue of effectively alleviating pulverization of tin‐based electrode materials caused by volume expansion. Even after 2000 cycles, the wire‐in‐double‐wall‐tube Sn/SnO2@carbon nanofibers exhibit a high specific capacity of 986.3 mAh g?1 (1 A g?1) and still maintains 508.2 mAh g?1 at high current density of 5 A g?1. This outstanding electrochemical performance suggests the multi‐wall Sn/SnO2@ carbon hollow nanofibers are great promising for high performance energy storage systems.  相似文献   

11.
在水热条件下,以碳球为模板合成了Mn2O3空心球,并用作锂硫电池的载硫基底材料。测试结果表明载硫量为51%的Mn2O3-S复合材料显示了较高的比容量,良好的循环稳定性和倍率性能。循环100圈后,最终可逆容量仍保持657 mA·g-1,证明该Mn2O3空心球是一种有潜力的载硫基底材料。  相似文献   

12.
在水热条件下,以碳球为模板合成了Mn2O3空心球,并用作锂硫电池的载硫基底材料。测试结果表明载硫量为51%的Mn2O3-S复合材料显示了较高的比容量,良好的循环稳定性和倍率性能。循环100圈后,最终可逆容量仍保持657 mA·g-1,证明该Mn2O3空心球是一种有潜力的载硫基底材料。  相似文献   

13.
Lithium–sulfur (Li?S) batteries are attractive owing to their higher energy density and lower cost compared with the universally used lithium‐ion batteries (LIBs), but there are some problems that stop their practical use, such as low utilization and rapid capacity‐fading of the sulfur cathode, which is mainly caused by the shuttle effect, and the uncontrollable deposition of lithium sulfide species. Herein, we report the design and fabrication of dual‐confined sulfur nanoparticles that were encapsulated inside hollow TiO2 spheres; the encapsulated nanoparticles were prepared by a facile hydrolysis process combined with acid etching, followed by “wrapping” with graphene (G?TiO2@S). In this unique composite architecture, the hollow TiO2 spheres acted as effective sulfur carriers by confining the polysulfides and buffering volume changes during the charge‐discharge processes by means of physical force from the hollow spheres and chemical binding between TiO2 and the polysulfides. Moreover, the graphene‐wrapped skin provided an effective 3D conductive network to improve the electronic conductivity of the sulfur cathode and, at the same time, to further suppress the dissolution of the polysulfides. As results, the G?TiO2@S hybrids exhibited a high and stable discharge capacity of up to 853.4 mA h g?1 over 200 cycles at 0.5 C (1 C=1675 mA g?1) and an excellent rate capability of 675 mA h g?1 at a current rate of 2 C; thus, G?TiO2@S holds great promise as a cathode material for Li?S batteries.  相似文献   

14.
A thermo‐controlled pesticide release system composed of poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) thin film grafted polydopamine (PDA) (PDMAEMA‐g‐PDA) microcapsules is reported. SiO2 microparticles are used as a template to prepare PDA‐coated SiO2 microparticles. The thermally‐responsive PDMAEMA thin films are grafted on PDA surfaces using a metal‐free surface‐initiated photopolymerization approach without adding any photo­initiator or photosensitizer under UV light irradiation. The subsequent acid etching yields PDMAEMA‐g‐PDA hollow microcapsules. PDMAEMA‐g‐PDA microcapsules exhibit well‐controlled release of avermectin (Av). The results show that the loading ability of PDMAEMA‐g‐PDA microcapsules of Av is up to 52.7% (w/w). The release kinetics of Av demonstrate that Av@PDMAEMA‐g‐PDA microcapsules exhibit temperature‐controlled release performance. This work is significant for controlled release systems. This simple design is expected to be used in various applications, such as in controlled drug release and agriculture‐related fields.

  相似文献   


15.
This report presents a facile approach for the low‐temperature synthesis of crystalline inorganic‐oxide composite hollow spheres by employing the bulk controlled synthesis of inorganic‐oxide nanocrystals with polymer spheres as templates. The sulfonated polystyrene gel layer can adsorb the target precursor and induce inorganic nanocrystals to grow on the template in situ. The crystalline phase and morphology of the composite shell is tunable. By simply adjusting the acidity of the titania sol, crystalline titania composite hollow spheres with tunable crystalline phases of anatase, rutile, or a mixture of both were achieved. The approach is general and has been extended to synthesize the representative perovskite oxide (barium and strontium titanate) composite hollow spheres. The traditional thermal treatment for crystallite transformation is not required, thus intact shells can be guaranteed. The combination of oxide properties such as high refractive index, high dielectric constant, and catalytic ability with the cavity of the hollow spheres is promising for applications such as opacifiers, photonic crystals, high‐κ‐gate dielectrics, and photocatalysis.  相似文献   

16.
We report the synthesis of cobalt sulfide multi‐shelled nanoboxes through metal–organic framework (MOF)‐based complex anion conversion and exchange processes. The polyvanadate ions react with cobalt‐based zeolitic imidazolate framework‐67 (ZIF‐67) nanocubes to form ZIF‐67/cobalt polyvanadate yolk‐shelled particles. The as‐formed yolk‐shelled particles are gradually converted into cobalt divanadate multi‐shelled nanoboxes by solvothermal treatment. The number of shells can be easily controlled from 2 to 5 by varying the temperature. Finally, cobalt sulfide multi‐shelled nanoboxes are produced through ion‐exchange with S2? ions and subsequent annealing. The as‐obtained cobalt sulfide multi‐shelled nanoboxes exhibit enhanced sodium‐storage properties when evaluated as anodes for sodium‐ion batteries. For example, a high specific capacity of 438 mAh g?1 can be retained after 100 cycles at the current density of 500 mA g?1.  相似文献   

17.
Nitrogen‐doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen‐containing groups on NHCS, and the resulting NHCS‐O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium‐ion batteries. The NHCS‐O electrode maintained a reversible specific capacity of 616 mAh g?1 after 250 cycles at a current rate of 500 mA g?1, which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS‐O electrode exhibited a reversible capacity of 503 mAh g?1 at a high current density of 1.5 A g?1. The superior electrochemical performance of NHCS‐O can be attributed to the hybrid structure, high N and O contents, and rich surface defects.  相似文献   

18.
In this work, we first synthesized polyacrylic acid (PAA) spheres and then used PAA as a template to load Co(OH)2 particles onto its surface. The product of CoS2 nanoparticles dispersed in N-doped hollow spheres (N-HCS) was prepared through sulfurization treatment (CoS2/S@N-HCS). During the sulfuration process, sulfur penetrates into the PAA, embedding into the graphite layer along with the carbonization process. It was found that during the charging and discharging process, the sulfur in the carbon layer will gradually dissolve out, thereby forming new ion diffusion channels in the carbon spheres and exposing more CoS2 active sites. The CoS2/S@N-HCS composite exhibits a specific capacity of 729.6 mAh g−1 after 500 cycles at a current density of 1 A g−1. The sodium-storage mechanism and reaction kinetics of the materials were further measured by in-situ electrochemical impedance spectroscopy, ex-situ X-ray diffraction, capacitance performance evaluation, and galvanostatic intermittent titration technique. The excellent cycling performance and rate capability demonstrated that the CoS2/S@N-HCS is a potential and prospective anode material for sodium-ion batteries.  相似文献   

19.
Hierarchical ZnO hollow spheres (400–500 nm in diameter) consisting of ZnO nanoparticles with a diameter of approximately 15 nm have been successfully prepared by a facile and rapid sonochemical process. The formation of hierarchical ZnO hollow spheres is attributed to the oriented attachment and subsequent Ostwald ripening process according to time‐dependent experiments. The as‐prepared ZnO hollow spheres are used as a photoanode in dye‐sensitized solar cells and exhibit a highly efficient power conversion efficiency of 4.33 %, with a short‐circuit current density of 9.56 mA cm?2, an open‐circuit voltage of 730 mV, and a fill factor of 0.62 under AM 1.5 G one sun (100 mW cm?2) illumination. Moreover, the photovoltaic performance (4.33 %) using the hierarchical ZnO hollow spheres is 38.8 % better than that of a ZnO nanoparticle photoelectrode (3.12 %), which is mainly attributed to the efficient light scattering for the former.  相似文献   

20.
Nanosheet‐assembled hierarchical V2O5 hollow microspheres are successfully obtained from V‐glycolate precursor hollow microspheres, which in turn are synthesized by a simple template‐free solvothermal method. The structural evolution of the V‐glycolate hollow microspheres has been studied and explained by the inside‐out Ostwald‐ripening mechanism. The surface morphologies of the hollow microspheres can be controlled by varying the mixture solution and the solvothermal reaction time. After calcination in air, hierarchical V2O5 hollow microspheres with a high surface area of 70 m2 g?1 can be obtained and the structure is well preserved. When evaluated as cathode materials for lithium‐ion batteries, the as‐prepared hierarchical V2O5 hollow spheres deliver a specific discharge capacity of 144 mA h g?1 at a current density of 100 mA g?1, which is very close to the theoretical capacity (147 mA h g?1) for one Li+ insertion per V2O5. In addition, excellent rate capability and cycling stability are observed, suggesting their promising use in lithium‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号