首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been established that a cationic rhodium(I)/H8‐binap complex catalyzes the [3+2+2] cycloaddition of 1,6‐diynes with cyclopropylideneacetamides to produce cycloheptadiene derivatives through cleavage of cyclopropane rings. In contrast, a cationic rhodium(I)/(S)‐binap complex catalyzes the enantioselective [2+2+2] cycloaddition of terminal alkynes, acetylenedicarboxylates, and cyclopropylideneacetamides to produce spiro‐cyclohexadiene derivatives which retain the cyclopropane rings.  相似文献   

2.
A new synthetic route to dihydrobiphenylenes has been developed. The process involves a mild RuII‐catalyzed [2+2+2] dimerization of ortho‐alkenylarylacetylenes or its more versatile variant, the Ru‐catalyzed [2+2+2] cycloaddition of ortho‐ethynylstyrenes with alkynes. Mechanistic aspects of this [2+2+2] cycloaddition are discussed.  相似文献   

3.
We investigate the on‐surface [2+2] cycloaddition reaction of 2,3,6,7,10,11‐hexabromotriphenylene (HBTP) on Ag(111), Cu(111), Au(111), and Cu‐dosed Au(111) surfaces using STM and DFT simulation focusing on the organometallic intermediates. The fully debrominated HBTP molecules form an organo‐silver framework on Ag(111) and an organo‐copper framework on Cu(111), both incorporating multinuclear metal adatom clusters. The organo‐silver framework is converted into porous covalent networks via [2+2] cycloaddition above 240 °C. In contrast, the organo‐copper framework is very stable and does not undergo [2+2] cycloaddition even at 300 °C. On Au(111), no organo‐gold intermediate of [2+2] cycloaddition is observed. After loading Cu onto Au(111), the partially debrominated HBTP molecules bind to Cu adatom dimers to form multinuclear organo‐copper complexes at 100 °C which undergo [2+2] cycloaddition at 140 °C. This study shows that the choice of surface can direct the reaction pathway.  相似文献   

4.
We describe the design and application of tailored aminoallyl precursors for catalytic (3+2) cycloaddition with conjugated dienes via a Pd‐aminoallyl intermediate. The new cycloaddition reactions override the conventional (4+3) selectivity of aminoallyl cation cycloaddition through a sequence of Pd‐allyl transfer and ring closure. A variety of highly substituted or fused pyrrolidine rings were synthesized using the cycloaddition, and can further undergo [1,3] N‐to‐C rearrangement to five‐membered carbocycles with a different palladium catalyst. The utility of the (3+2) cycloaddition is also demonstrated by the preparation of various derivatives from the bicyclic pyrrolidine products.  相似文献   

5.
The first study of pseudo‐bimolecular cycloaddition reaction dynamics in the gas phase is presented. We used femtosecond time‐resolved photoelectron spectroscopy (TRPES) to study the [2+2] photocycloaddition in the model system pseudo‐gem‐divinyl[2.2]paracyclophane. From X‐ray crystal diffraction measurements we found that the ground‐state molecule can exist in two conformers; a reactive one in which the vinyl groups are immediately situated for [2+2] cycloaddition and a nonreactive conformer in which they point in opposite directions. From the measured S1 lifetimes we assigned a clear relation between the conformation and the excited‐state reactivity; the reactive conformer has a lifetime of 13 ps, populating the ground state through a conical intersection leading to [2+2] cycloaddition, whereas the nonreactive conformer has a lifetime of 400 ps. Ab initio calculations were performed to locate the relevant conical intersection (CI) and calculate an excited‐state [2+2] cycloaddition reaction path. The interpretation of the results is supported by experimental results on the similar but nonreactive pseudo‐para‐divinyl[2.2]paracyclophane, which has a lifetime of more than 500 ps in the S1 state.  相似文献   

6.
A highly efficient method for the synthesis of fluorine‐containing multisubstituted phenanthridines through Rh‐catalyzed alkyne [2+2+2] cycloaddition reactions has been developed. This method exhibits excellent functional‐group compatibility. When a bromodifluoromethyl group, rather than a trifluoromethyl group, was employed in the cycloaddition reaction, more‐complicated polycyclic compounds were obtained through tandem Rh‐catalyzed cycloaddition/C? H difluoromethylenation. This route provides convenient access to fluorine‐containing polycyclic compounds.  相似文献   

7.
A Rh‐catalyzed intramolecular [3+2+2] cycloaddition is reported. The cycloaddition affords synthetically relevant 5,7,5‐fused tricyclic systems of type 2 from readily available dienyne precursors. The transformation takes place with moderate or good yields, high diastereoselectivity, and total chemoselectivity.  相似文献   

8.
Reported herein is the novel gold‐catalyzed intermolecular [2+2+2] cycloaddition of ynamides with two discrete nitriles to form monomeric 4‐aminopyrimidines, which are pharmaceutically important structural motifs. The utility of this new cycloaddition is demonstrated by the excellent regioselectivity obtained using a variety of ynamides and nitriles.  相似文献   

9.
A Pd‐Au alloy efficiently catalyzed the [2+2+2] cycloaddition of substituted alkynes. Whereas monometallic Pd and Au catalysts were totally ineffective, Pd‐Au alloy nanoparticle catalysts with a low Pd/Au molar ratio showed high activity to give the corresponding polysubstituted arenes in high yields. A variety of substituted alkynes participated in various modes of cycloaddition under Pd‐Au alloy catalysis. The Pd‐Au alloy catalysts exhibited high air tolerance and reusability.  相似文献   

10.
A rhodium(I)‐BINAP‐catalyzed highly enantioselective [2+2+2] cycloaddition of enynes with alkynes has been developed. Diverse fused tricyclic hydronaphthofuran scaffolds with three consecutive stereogenic centers were constructed in one step from easily available materials with excellent chemo‐, regio‐, diastereo‐, and enantioselectivity. Notable features of these reactions include 100 % atom economy, very broad scope, and mild reaction conditions.  相似文献   

11.
Wang XN  Shen LT  Ye S 《Organic letters》2011,13(24):6382-6385
The enantioselective N-heterocyclic carbene-catalyzed formal [2 + 2] and [2 + 2 + 2] cycloaddition of ketenes and isothiocyanates were developed. Reaction with N-aryl isothiocyanates at room temperature favors the [2 + 2] cycloaddition, while reaction with N-benzoyl isothiocyanates at -40 °C favors the [2 + 2 + 2] cycloaddition.  相似文献   

12.
A novel cascade reaction has been developed for the synthesis of 2,6‐methanopyrrolo[1,2‐b]isoxazoles based on the gold‐catalyzed generation of an N‐allyloxyazomethine ylide. This reaction involves sequential [3+2]/retro‐[3+2]/[3+2] cycloaddition reactions, thus providing facile access to fused and bridged heterocycles which would be otherwise difficult to prepare using existing synthetic methods. Notably, this reaction allows the efficient construction of three C−C bonds, one C−O bond, one C−N bond and one C−H bond, as well as the cleavage of one C−C bond, one C−O bond and one C−H bond in a single operation. The intermolecular cycloaddition of an N‐allyloxyazomethine ylide and the subsequent application of the product to the synthesis of tropenol is also described.  相似文献   

13.
Conjugated cyclic trienes have the potential for different types of cycloaddition reactions. In the present work, we will, in a novel asymmetric cycloaddition reaction, demonstrate that the organocatalytic reaction of 2‐acyl cycloheptatrienes with azomethine ylides proceeds as a [3+2] cycloaddition, which is in contrast to the Lewis acid‐catalyzed reaction, in which a [3+6] cycloaddition takes place. In the presence of a chiral organosuperbase, 2‐acyl cycloheptatrienes react in a highly enantioselective manner in the [3+2] cycloaddition with azomethine ylides, providing the 1,3‐dipolar cycloaddition product in high yields and up to 99 % ee. It is also shown that the diene formed by the reaction can undergo stereoselective dihydroxylation, bromination, and cycloaddition reactions. Finally, based on experimental observations, some mechanistic considerations are discussed.  相似文献   

14.
Participation of alkenes and allenes in [2+2+2] cycloaddition reactions has attracted much attention recently. This version of the well‐established alkyne cyclotrimerization renders interesting products, such as cyclohexadienes and other polycycles, through cascade processes. Many mechanistic variations are observed when using certain metal complexes as catalysts. The frequent generation of stereogenic centers has prompted the development of efficient asymmetric versions. This Minireview summarizes the efforts reported to date on the use of double bonds as partners in [2+2+2] cyclotrimerizations.  相似文献   

15.
A method for the synthesis of phosphabenzenes under iron catalysis is described. Thus, the FeI2‐catalyzed [2+2+2] cycloaddition of diynes with phosphaalkynes in m‐xylene gave a variety of phosphabenzenes in good to high yields (up to 87 % yield).  相似文献   

16.
An in‐depth study of the cobalt‐catalyzed [2+2+2] cycloaddition between yne‐ynamides and nitriles to afford aminopyridines has been carried out. About 30 nitriles exhibiting a broad range of steric demand and electronic properties have been evaluated, some of which open new perspectives in metal‐catalyzed arene formation. In particular, the use of [CpCo(CO)(dmfu)] (dmfu=dimethyl fumarate) as a precatalyst made possible the incorporation of electron‐deficient nitriles into the pyridine core. Modification of the substitution pattern at the yne‐ynamide allows the regioselectivity to be switched toward 3‐ or 4‐aminopyridines. Application of this synthetic methodology to the construction of the aminopyridone framework using a yne‐ynamide and an isocyanate was also briefly examined. DFT computations suggest that 3‐aminopyridines are formed by formal [4+2] cycloaddition between the nitrile and the intermediate cobaltacyclopentadiene, whereas 4‐aminopyridines arise from an insertion pathway.  相似文献   

17.
The use of N‐(p‐chlorophenyl)methylbenzoxazole‐2‐thione as a sulfur‐atom donor enables the catalytic [2+2+1] cycloaddition of diynes in wet DMF at 80 °C when open to air, thus affording diverse fused thiophenes with good yields and wide functional‐group compatibility. A plausible mechanism, involving a cationic ruthenacycle intermediate, was also proposed on the basis of several control experiments.  相似文献   

18.
Highly selective divergent cycloaddition reactions of enoldiazo compounds and α‐diazocarboximides catalyzed by copper(I) or dirhodium(II) have been developed. With tetrakis(acetonitrile)copper(I) tetrafluoroborate as the catalyst epoxypyrrolo[1,2‐a]azepine derivatives were prepared in good yields and excellent diastereoselectivities through the first reported [3+3]‐cycloaddition of a carbonyl ylide. Use of Rh2(pfb)4 or Rh2(esp)2 directs the reactants to regioselective [3+2]‐cycloaddition generating cyclopenta[2,3]pyrrolo[2,1‐b]oxazoles with good yields and excellent diastereoselectivities.  相似文献   

19.
A practical method for the synthesis of azepine derivatives, a typical seven‐membered heterocyclic ring system, was developed and involves the use of hexafluoroantimonic acid to catalyze a formal [3+2+2] cycloaddition of aziridines with two alkynes. This method was applicable to two of the same or different terminal alkynes for the [3+2+2] cycloaddition with unactivated aziridines, and furnished the corresponding azepine derivatives in good yields with good levels of chemo‐ and regioselectivity. The mechanism was also discussed according to the results of the in situ HRMS and 1H NMR analysis.  相似文献   

20.
A synthetic method to stereoselectively prepare 4‐(cyclohexa‐1,3‐dienyl)‐1,3‐dioxolanes in good to excellent yields by gold(I)‐catalyzed [2+2+1] cycloaddition of 1,6‐diyne carbonates and esters with aldehydes is described. The cascade process involves 1,2‐acyloxy migration followed by cyclopropenation and cycloreversion. This leads to an unprecedented [2+2+1] cycloaddition of the resulting alkenylgold carbenoid species, examples of which are extremely rare, with two aldehyde molecules at catalyst loadings as low as 1 mol %. The usefulness of this cycloisomerization chemistry was further demonstrated by the transformation of one example to the corresponding phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号