首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrothermal reactions of Zn(NO3)2•6H2O with 1,2-di(4-pyridyl)ethylene (dpe) and 1,4-benzenedicarboxylate (1,4-BDC) or 1,3-benzenedicarboxylate (1,3-BDC) in water gave rise to two new metal-organic coordination polymers, [Zn(1,4-BDC)(dpe)]n (1) and [Zn4O(1,3-BDC)3(dpe)]n (2). Both compounds were characterized by elemental analysis and IR spectroscopy, and their structures were determined by single crystal X-ray diffraction. 1 displays a rare 5-fold interpenetrating 66-diamondoid framework while 2 possesses an interlocked 3D network formed by inclined interpenetration of 2D (4,4) networks that are constructed by μ4-oxo tetrazinc Zn4O cores and the bridging dpe and 1,3-BDC ligands. Thermal and photoluminescent properties of 1 and 2 were also investigated.  相似文献   

2.
Three coordination polymers, {[Cd(3‐bpd)2(NCS)2]×C2H5OH}n ( 1 ), {[Cd(3‐bpd)(dpe)(NO3)2]×(3‐bpd)}2 ( 2 ), {[Cd(dpe)2(NCS)2]×3‐bpd×2H2O}n ( 3 ) (3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene; dpe = 1,2‐bis(4‐pyridyl)ethane), were prepared and structurally characterized by a single‐crystal X‐ray diffraction method. In compound 1 , each Cd(II) ion is six‐coordinate bonded to six nitrogen atoms from four 3‐bpd and two NCS? ligands. The 3‐bpd acts as a bridging ligand connecting the Cd(II) ion to generate a 2D layered metal‐organic framework (MOF) by using a rhomboidal‐grid as the basic building units with the 44 topology. In compound 2 , the Cd(II) ion is also six‐coordinate bonded to four nitrogen atoms of two 3‐bpd, two dpe and two oxygen atoms of two NO3? ligands. The 3‐bpd and dpe ligands both adopt bis‐monodentate coordination mode connecting the Cd(II) ions to generate a 2D layered MOF by using a rectangle‐grid as the basic building units with the 44 topology. In compound 3 , two crystallographically independent Cd(II) ions are both coordinated by four nitrogen atoms of dpe ligands in the basal plane and two nitrogen atom of NCS? in the axial sites. The dpe acts as a bridging ligand to connect the Cd(II) ions forming a 2D interpenetrating MOFs by using a square‐grid as the basic unit with the 44 topology. All of their 2D layered MOFs in compounds 1 ‐ 3 are then arranged in a parallel non‐interpenetrating ABAB—packing manner in 1 and 2 , and mutually interpenetrating manner in 3 , respectively, to extend their 3D supramolecular architectures with their 1D pores intercalated with solvent (ethanol in 1 or H2O in 3 ) or free 3‐bpd molecules in 2 and 3 , respectively. The photoluminescence measurements of 1 ‐ 3 reveal that the emission is tentatively assigned to originate from π‐π* transition for 1 and 2 and probably due to ligand‐center luminescence for compounds 3 , respectively.  相似文献   

3.
Half‐metallocene diene complexes of niobium and tantalum catalyzed three‐types of polymerization: (1) the living polymerization of ethylene by niobium and tantalum complexes, MCl24‐1,3‐diene)(η5‐C5R5) ( 1‐4 ; M = Nb, Ta; R = H, Me) combined with an excess of methylaluminoxane; (2) the stereoselective ring opening metathesis polymerization of norbornene by bis(benzyl) tantalum complexes, Ta(CH2Ph)24‐1,3‐butadiene)(η5‐C5R5) ( 11 : R = Me; 12 : R = H) and Ta(CH2Ph)24o‐xylylene)(η5‐C5Me5) ( 16 ); and (3) the polymerization of methyl methacrylate by butadiene‐diazabutadiene complexes of tantalum, Ta(η2‐RN=CHCH=NR)(η4‐1,3‐butadiene)(η5‐C5Me5) ( 25 : R = p‐methoxyphenyl; 26 : R = cyclohexyl) in the presence of an aluminum compound ( 24 ) as an activator of the monomer.  相似文献   

4.
Two supramolecular architectures, [Mn(3‐bpd)2(NCS)2(H2O)2]·2H2O ( 1 ) and {[Mn(bpe)(NCS)2(H2O)2]·(3‐bpd)·(bpe)·H2O}n ( 2 ) [bpe = 1,2‐bis(4‐pyridyl)ethylene and 3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene] have been synthesized and characterized by spectroscopic, elemental and single crystal X‐ray diffraction analyses. Compound 1 crystallizes in the monoclinic system, space group P21/c, with chemical formula C26H28Mn N10O4S2, a = 9.1360(6), b = 9.7490(6), c = 17.776(1) Å, β = 93.212(1)°, and Z = 2 while compound 2 crystallizes in the orthorhombic system, space group P212121, with chemical formula C38H36Mn1N10O3S2, a = 14.1902(6), b = 15.4569(7), c = 18.2838(8) Å, α = β = γ = 90°, and Z = 4. Structural determination reveals that the coordination geometry at Mn(II) in compound 1 or 2 is a distorted octahedral which consists of two nitrogen donors of two NCS?ligands, two oxygen donors of two water molecules, and two nitrogen donors of two 3‐bpd ligands for 1 and two dpe ligands for 2 , respectively. The two 3‐bpd ligands in 1 adopt a monodentate binding mode and the dpe in 2 adopts a bismonodentate bridging mode to connect the Mn(II) ions forming a 1D chain‐like coordination polymer. Both the π‐π stacking interactions between the coordinated and the free pyridyl‐based ligands and intermolecular hydrogen bonds among the coordinated and the crystallized water molecules and the free pyridyl‐based ligands play an important role in construction of these 3D supramolecular architectures.  相似文献   

5.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

6.
C2‐symmetric zirconocenes activated by methylaluminoxane were utilized as catalysts in the polymerization of 1,3‐diolefins. The results indicate that the most crowded catalytic precursor rac[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 ( 1 ) is also the most active one, giving 1,4‐polymerization of 1,3‐butadiene and (Z)‐1,3‐pentadiene and 1,2‐polymerization of (E)‐1,3‐pentadiene and 4‐methyl‐1,3‐pentadiene. Probably, the different behavior of 1 with respect to other C2‐symmetric zirconocenes utilized is due to the different stability of the bond between the last inserted monomer unit and the metal, as well as to the coordination of incoming monomer.  相似文献   

7.
The Diels‐Alder cycloadditions of facially dissymmetric maleic anhydride 1 with facially nonequivalent exocyclic 1,3‐butadienes(dimethylidenebicyclo[2.2.2]octene 3 and 2,3,5,6‐tetramethylidenebicyclo[2.2.2]‐octene ( 4 )) were investigated. In each cycloaddition, the reaction occurred via the course in which 1 added exclusively by its syn‐face (same face as the etheno‐bridge) onto either π‐face of the exocyclic 1,3‐butadiene systems to produce only two of the four possible stereoisomeric monocycloadducts ( 8a / 8b and 9a / 9b ). In the Diels‐Alder cycloaddition of 1 with bis‐exocyclic butadiene 4 , however, both monocycloadducts 9a and 9b underwent subsequent cycloaddition with distinctive facial selectivity to produce the Cs‐symmetric bis‐cyclohexanobarrelene 10a as only bis‐cycloadduct.  相似文献   

8.
Poly(propylene‐ran‐1,3‐butadiene) was synthesized using isospecific zirconocene catalysts and converted to telechelic isotactic polypropylene by metathesis degradation with ethylene. The copolymers obtained with isospecific C2‐symmetric zirconocene catalysts activated with modified methylaluminoxane (MMAO) had 1,4‐inserted butadiene units ( 1,4‐BD ) and 1,2‐inserted units ( 1,2‐BD ) in the isotactic polypropylene chain. The selectivity of butadiene towards 1,4‐BD incorporation was high up to 95% using rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride (Cat‐A)/MMAO. The molar ratio of propylene to butadiene in the feed regulated the number‐average molecular weight (Mn) and the butadiene contents of the polymer produced. Metathesis degradations of the copolymer with ethylene were conducted with a WCI6/SnMe4/propyl acetate catalyst system. The 1H NMR spectra before and after the degradation indicated that the polymers degraded by ethylene had vinyl groups at both chain ends in high selectivity. The analysis of the chain scission products clarified the chain end structures of the poly(propylene‐ran‐1,3‐butadiene). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5731–5740, 2007  相似文献   

9.
The structures of the open‐chain amide carboxylic acid raccis‐2‐[(2‐methoxyphenyl)carbamoyl]cyclohexane‐1‐carboxylic acid, C15H19NO4, (I), and the cyclic imides raccis‐2‐(4‐methoxyphenyl)‐3a,4,5,6,7,7a‐hexahydroisoindole‐1,3‐dione, C15H17NO3, (II), chiral cis‐3‐(1,3‐dioxo‐3a,4,5,6,7,7a‐hexahydroisoindol‐2‐yl)benzoic acid, C15H15NO4, (III), and raccis‐4‐(1,3‐dioxo‐3a,4,5,6,7,7a‐hexahydroisoindol‐2‐yl)benzoic acid monohydrate, C15H15NO4·H2O, (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least‐squares plane = 0.060 (1) Å for the amide O atom] and the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy–carboxy O—H...O hydrogen‐bonding interactions [graph‐set notation R22(8)]. The cyclic imides (II)–(IV) are conformationally similar, with comparable benzene ring rotations about the imide N—Car bond [dihedral angles between the benzene and isoindole rings = 51.55 (7)° in (II), 59.22 (12)° in (III) and 51.99 (14)° in (IV)]. Unlike (II), in which only weak intermolecular C—H...Oimide hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O—H...O hydrogen‐bonding associations. With (III), these involve imide O‐atom acceptors, giving one‐dimensional zigzag chains [graph‐set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxy O‐atom acceptors in a cyclic R44(12) association, giving a two‐dimensional sheet structure. The structures reported here expand the structural database for compounds of this series formed from the facile reaction of cis‐cyclohexane‐1,2‐dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.  相似文献   

10.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

11.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

12.
In the title compound, diaqua­bis(1,4‐di‐4‐pyrid­yl‐2,3‐diaza‐1,3‐butadiene)dimethanolzinc(II) bis­(perchlorate) 1,4‐di‐4‐pyrid­yl‐2,3‐diaza‐1,3‐butadiene methanol 1.72‐solvate 1.28‐hydrate, [Zn(C12H10N4)2(CH4O)2(H2O)2](ClO4)2·C12H10N4·1.72CH4O·1.28H2O, determined at ca 110 K, the Zn cation and the extended dipyridyl ligand both lie across inversion centres in space group P. The structure consists of a network arrangement of the constituent species stabilized by a combination of coordination, hydrogen bonding and π–π forces. Uncoordinated methanol and water solvent mol­ecules occupy the otherwise void spaces within and between the networks.  相似文献   

13.
The unusual title macrocyclic structure, C60H54B2O4, has been isolated from exposure of 3‐BF3‐1‐phenylbuta‐1,3‐diene to both air and moisture in an attempt to obtain crystals of the starting butadiene compound. Formation of the macrocycle from six molecules of the starting butadiene material is rationalized and its structural features are compared with those of other B(OR)2‐substituted cyclohexane and benzene ring containing structures. Molecules reside on crystallographic centers of inversion and there are no intermolecular interactions of note in the crystal structure.  相似文献   

14.
We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc?, Ln=Gd, Tb or X=NO3?, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′‐(propane‐1,3‐diyldiimino)bis[2‐(hydroxylmethyl)propane‐1,3‐diol] (H6L) pro‐ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc? for NO3?). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu‐based single‐molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C4v versus Cs).  相似文献   

15.
Divalent zinc coordination polymers containing bis(3‐pyridylmethyl)piperazine (3‐bpmp) and isophthalate ligands have been hydrothermally synthesized and structurally characterized by single‐crystal X‐ray diffraction. {[Zn(ip)(H3‐bpmp)]ClO4·4H2O}n ( 1 , ip = isophthalate) has twofold parallel interpenetrated (4,4) grid cationic coordination polymer nets, with unligated perchlorate ions and intriguing infinite water molecule chains. {[Zn2(NO2ip)3(H23‐bpmp)(H2O)5]·3H2O}n ( 2 , NO2ip = 5‐nitroisophthalate) exhibits a supramolecular lattice built from 1D chain motifs, revealing a significant dependence of topology on the steric bulk of the dicarboxylate ligand. Luminescent properties for 1 and 2 are also reported.  相似文献   

16.
We report a combined experimental and theoretical investigation on the Raman spectra of the polymorphs α, β, γ, and δ of 1,1,4,4‐tetraphenyl‐1,3‐butadiene (TPB), in the region of the intramolecular modes. The interpretation of the polarized spectra is supported by ab‐initio calculations for the isolated molecules and by lattice dynamics calculations for the crystals. The calculations reproduce the peculiar, and surprisingly large, differences among the spectra of the various polymorphs. The phenyl groups of 1,1,4,4‐tetraphenyl‐1,3‐butadiene may arrange themselves around the butadiene skeleton in 2 stable conformers, which have either inversion (Ci) or 2‐fold (C2) symmetry and therefore exhibit intramolecular vibrations with quite different Raman selection rules and spectra. The compound forms 4 crystalline polymorphs (α, β, γ, and δ) with different combinations of Ci and C2 conformers, and correspondingly different intramolecular spectra. The theoretical calculations provide a quantitative analysis of the various spectra.  相似文献   

17.
《化学:亚洲杂志》2017,12(14):1807-1815
A room‐temperature slow diffusion reaction of the metal nitrates [M=ZnII and CoII] with 5‐azido isophthalic acid (AIPA) and 1,4‐bis(4‐pyridyl)‐2,3‐diaza‐1,3‐butadiene (BPDB) resulted in a new two‐dimensional interdigitated coordination polymer, [M(C8H3N3O4)(C12H10N4)] ⋅ DMF [DMF=dimethyl formamide (C3H7NO)]. The non‐bonded DMF molecules were found to exchange through a single‐crystal to single‐crystal (SCSC) fashion with many aliphatic nitrile compounds. More importantly, the present compound, I⋅DMF (Zn) appears to absorb cis ‐crotononitrile selectively from the cis /trans mixture as well as a mixture containing the structural isomer (allylnitrile). It also preferentially absorbs propionitrile from an equimolar mixture of acetonitrile, propionitrile, and butyronitrile (1:2:1). The cobalt compound exhibits anti‐ferromagnetic behavior.  相似文献   

18.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

19.
Efficient separation of n‐butene (n‐C4H8) and iso‐butene (iso‐C4H8) is of significance for the upgrading of C4 olefins to high‐value end products but remains one of the major challenges in hydrocarbon purifications owing to their similar structures. Herein, we report a flexible metal‐organic framework, MnINA (INA=isonicotinate), featuring one‐dimensional pore channels with periodically large pocket‐like cavities connected by narrow bottlenecks, for the first time for efficient n‐/iso‐C4H8 separation. MnINA with smaller pore size (4.62 Å) compared with CuINA (4.84 Å), exhibits steep adsorption isotherms and high capacity of 1.79 mmol g?1 for n‐C4H8 (4.46 Å) through strong host‐guest interactions via C?H???π bonding. The narrow bottlenecks exert barriers for the large molecules of iso‐C4H8 (4.84 Å) within the gate‐opening pressure range of 0–0.1 bar. This gives rise to MnINA with excellent separation selectivity of 327.7 for n‐/iso‐C4H8 mixture. The adsorption mechanism for n‐C4H8 and the gate‐opening effect were investigated by dispersion‐corrected density functional (DFT‐D) theory, verifying the strong interactions between n‐C4H8 and the frameworks as well as the gate‐opening effect derived from the rotation of organic linkers. The breakthrough tests confirmed MnINA and CuINA can be promising candidates for n‐/iso‐C4H8 separation.  相似文献   

20.
The mol­ecular and supramolecular structures of 2‐(1,3‐dioxo‐2,3,3a,4,7,7a‐hexa­hydro‐1H‐isoindol‐2‐yl)phenyl acetate, C16‐H15NO4, (I), and its para isomer, 4‐(1,3‐dioxo‐2,3,3a,4,7,7a‐hexa­hydro‐1H‐isoindol‐2‐yl)phenyl acetate, (II), are reported. The torsion angle between the succinimide and benzene rings depends on the position of the acet­oxy substitution [89.7 (1) and 61.9 (1)° for (I) and (II), respectively]. The twist of the acet­oxy group relative to the mean plane of the benzene ring is almost independent of the acet­oxy position [66.0 (1) and 70.0 (1)°]. Packing inter­actions for both compounds include soft C—H⋯X (X = O and Ph) inter­actions, forming chains of centrosymmetric dimers and inter­linked chains for (I) and (II), respectively. In addition, three perpendicular dipole C=O⋯C=O inter­actions contribute to the supramolecular structure of (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号