首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A redox‐neutral cobalt(III)‐catalyzed synthetic approach for the direct synthesis of unprotected indoles showcasing an N?N bond cleavage is reported. The herein newly introduced Boc‐protected hydrazines establish a beneficial addition to the limited portfolio of oxidizing directing groups for cobalt(III) catalysis. Moreover, the developed catalytic methodology tolerates a good variety of functional groups.  相似文献   

2.
Starting from diverse alkene‐tethered aryl iodides and O‐benzoyl‐hydroxylamines, the enantioselective reductive cross‐electrophilic 1,2‐carboamination of unactivated alkenes was achieved using a chiral pyrox/nickel complex as the catalyst. This mild, modular, and practical protocol provides rapid access to a variety of β‐chiral amines with an enantioenriched aryl‐substituted quaternary carbon center in good yields and with excellent enantioselectivities. This process reveals a complementary regioselectivity when compared to Pd and Cu catalysis.  相似文献   

3.
A protocol for the three‐component 1,4‐carboamination of dienes is described. Synthetically versatile Weinreb amides were coupled with 1,3‐dienes and readily available dioxazolones as the nitrogen source using [Cp*RhCl2]2‐catalyzed C?H activation to deliver the 1,4‐carboaminated products. This transformation proceeds under mild reaction conditions and affords the products with high levels of regio‐ and E‐selectivity. Mechanistic investigations suggest an intermediate RhIII–allyl species is trapped by an electrophilic amidation reagent in a redox‐neutral fashion.  相似文献   

4.
For the first time, a highly regioselective intermolecular sulfonylamidation unactivated secondary Csp3?H bond has been achieved using IrIII catalysts. The introduced N,N’‐bichelating ligand plays a crucial role in enabling iridium–nitrene insertion into a secondary Csp3?H bond via an outer‐sphere pathway. Mechanistic studies and density functional theory (DFT) calculations demonstrated that a two‐electron concerted nitrene insertion was involved in this Csp3?H amidation process. This method tolerates a broad range of linear and branched‐chain N‐alkylamides, and provides efficient access to diverse γ‐sulfonamido‐substituted aliphatic amines.  相似文献   

5.
6.
《中国化学快报》2020,31(12):3237-3240
Cp*Co(III)-catalyzed direct CH amidation of azines has been developed. This conversion could proceed smoothly in the absence of external oxidants, acids or bases, with excellent regioselectivity and broad functional group tolerance. CO2 was released as the sole byproduct, thus providing an environmentally benign amidation process. The products obtained are important intermediates in organic synthesis.  相似文献   

7.
Reported is an achiral CpxRhIII/chiral carboxylic acid catalyzed asymmetric C?H alkylation of diarylmethanamines with a diazomalonate, followed by cyclization and decarboxylation to afford 1,4‐dihydroisoquinolin‐3(2H)‐one. Secondary alkylamines as well as nonprotected primary alkylamines underwent the transformation with high enantioselectivities (up to 98.5:1.5 e.r.) by using a newly developed chiral carboxylic acid as the sole source of chirality to achieve enantioselective C?H cleavage by a concerted metalation‐deprotonation mechanism.  相似文献   

8.
(1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLβ-AKLβ-AK)2-NH2 containing β-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.  相似文献   

9.
Cp*Co(III)-catalyzed direct C-H amidation of azines has been developed. This conversion could proceed smoothly in the absence of external oxidants, acids or bases, with excellent regioselectivity and broad functional group tolerance. CO2 was released as the sole byproduct, thus providing an environmentally benign amidation process. The products obtained are important intermediates in organic synthesis.  相似文献   

10.
An efficient and enantioselective hydrogenation of N-acetylamino phenyl acrylic acids was successfully developed by using ruthenium catalyst. This methodology is important in the field of pharmaceuticals and provides a new process for the preparation of unnatural amino acids and tamsulosin chiral intermediate.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource: Full experimental and spectral details.]  相似文献   

11.
12.
The paper describes recent results of studies on the accelerating effect of sulfur‐containing protein amino acids and water activity on multistep Bi(III) ion electroreduction at mercury electrode. The catalytic effect of methionine (Mt), cystine (CY) and cysteine (CE) was analyzed based on kinetic and thermodynamic parameters, which correlated with water activity. Investigations of adsorption of those amino acids at the electrode/solution interface provided information for the analysis of the electrical double layer and its influence on the kinetics of the electrode process. The multistep Bi(III) electroreduction process is controlled by the kinetics of active complexes formation, which precedes transfer of consecutive electrons.  相似文献   

13.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

14.
The unique regioselectivity and reactivity of cobalt(III) in the direct cyclization of N‐nitrosoanilines with alkynes for the expedient synthesis of N‐substituted indoles is demonstrated. In the presence of a cobalt(III) catalyst, high regioselectivity was observed when using unsymmetrical meta‐substituted N‐nitrosoanilines. Moreover, internal alkynes bearing electron‐deficient groups, which are almost unreactive in the [Cp*RhIII]‐catalyzed system, display good reactivity in this transformation.  相似文献   

15.
A valuable class of new heterocyclic and alicyclic prochiral α‐aminomethylacrylates has been conveniently synthesized through a three‐step transformation involving a Baylis–Hillman reaction, O‐acetylation, and a subsequent allylic amination. The corresponding novel β2‐amino acid derivatives were prepared with excellent enantioselectivities and high yields by catalytic asymmetric hydrogenation using the catalyst rhodium(Et‐Duphos) (Et‐Duphos=2′,5′,2′′,5′′‐tetraethyl‐1,2‐bis(phospholanyl)benzene)) under mild reaction conditions (up to 99 % ee and S/C=1000). The influence of the substrate on the enantioselectivity and reactivity is investigated, and the most suitable substrate configuration for the highly efficient enantioselective hydrogenation of β‐substituted α‐aminomethylacrylates under the Rh–Duphos system is reported. The current protocol provides a very practical, facile, and scalable method for the preparation of heterocyclic and alicyclic β2‐amino acids and their derivatives.  相似文献   

16.
The borocarbonylative coupling of unactivated alkenes with alkyl halides remains a challenge. In this communication, a Cu‐catalyzed borocarbonylative coupling of unactivated alkenes with alkyl halides for the synthesis of β‐boryl ketones has been developed. A broad range of β‐boryl ketone derivatives was prepared in moderate to excellent yields with complete regioselectivity.  相似文献   

17.
Making circles with N and O : Cyclic tripeptides containing an unnatural Cα‐tetrasubstituted THF amino acid are prepared by copper(I) and palladium(0)‐catalyzed N‐ and O‐arylation reactions. The reactions give access to side chain‐modified derivatives of the unnatural amino acid and macrocyclic peptidomimetics.

  相似文献   


18.
The reductions of Co(terpy)23+ and Co(edta)? complexes by ascorbic acid have been subjected to a detailed kinetic study in the range of pH =1–10.9. For each complex the rate law of the reaction is interpreted as a rate determining reaction between Co(III) complex and the ascorbic acid in the form of HA? (k1) and A2? (k2), depending on the pH of the solution, followed by a rapid scavenge of the ascorbic acid radicals by Co(III) complex. With given Ka1 and Ka2, the rate constants are k1 = 0.25 and 9.87 × 10?5 M?1s?1, k2 = 1.28 × 106 and 18.7 M?1s?1 for Co(terpy)23+and Co(edta)? complexes, respectively, at T = 25 °C and μ = 0.50M (terpy)and 1.0 M (edta) HClO4/LiClO4. The mechanism of the reaction is discussed on the basis of Marcus theory for outer sphere electron transfer process. Spin change and charge effect, duly considered, account for the non‐adiabatic behavior in the reduction of Co(edta)? complex.  相似文献   

19.
Cobalt‐based catalysts can replace the homologous group‐9 rhodium‐based ones. Herein, we used density functional theory (DFT) calculations to predict the synthesis of 2,3‐dihydropyridines using α,β‐unsaturated oxime pivalates and alkenes catalysed by [Cp*CoOAc]+ instead of [Cp*RhOAc]+. The catalytic cycle involves reversible acetate‐assisted metalation‐deprotonation, migratory insertion of alkenes, and reductive elimination/N‐O cleavage. The migratory insertion of alkenes was determined to be the rate‐determining step, and the reaction is irreversible due to the strongly exergonic reductive elimination/N? O cleavage. When using the CF3‐substituted Cp*Co(III) catalyst, the apparent activation energy indicates that the title reaction can proceed at higher temperatures. Electron‐withdrawing substituent groups on Cp* facilitate the reaction. In contrast, substituting phenyl with the electron‐deficient p‐CF3‐phenyl at the 2‐position of α,β‐unsaturated oxime pivalate hinders the reaction, and so does the use of polarized alkenes with electron‐withdrawing substituent groups  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号