首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9′-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT), without adding any extra co-catalyst, can photocatalyze reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 μmol g−1 h−1 with a detectable selectivity of up to 100 %. After 5 cycles of CO2 re-purging experiments, no distinct decline in CO amount and reaction rate was observed, indicating the promising photocatalytic stability of PFBT Pdots in the photocatalytic CO2 reduction reaction. A mechanistic study reveals that photoexcited PFBT Pdots are reduced by sacrificial donor first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in aqueous solution, which therefore provides a strategy to develop highly efficient and environmentally friendly nanoparticulate photocatalysts for CO2 reduction.  相似文献   

2.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

3.
Herein, Pt‐decorated TiO2 nanocube hierarchy structure (Pt‐TNCB) was fabricated by a facile solvothermal synthesis and in‐situ photodeposition strategy. The Pt‐TNCB exhibits an excellent solar‐driven photocatalytic hydrogen evolution rate (337.84 μmol h?1), which is about 37 times higher than that of TNCB (9.19 μmol h?1). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 μmol h?1). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar‐driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron‐hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt‐TNCB photocatalyst with SPR effect may provide a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.  相似文献   

4.
A novel visible‐light‐driven AgBr‐Ag‐BiOBr photocatalyst was synthesized by a facile hydrothermal method. Taking advantage of both p‐n heterojunctions and localized surface plasmon resonance, the p‐metal‐n structure exhibited a superior performance concerning degradation of methyl orange under visible‐light irradiation (λ>420 nm). A possible photodegradation mechanism in the presence of AgBr‐Ag‐BiOBr composites was proposed, and the radical species involved in the degradation reaction were investigated. HO2?/?O2? played the same important role as ?OH in the AgBr‐Ag‐BiOBr photocatalytic system, and both the electron and hole were fully used for degradation of organic pollutants. A dual role of metallic Ag in the photocatalysis was proposed, one being surface plasmon resonance and the other being an electron‐hole bridge. Due to the distinctive p‐metal‐n structure, the visible‐light absorption, the separation of photogenerated carriers and the photocatalysis efficiency were greatly enhanced.  相似文献   

5.
Herein, multifunctional N‐doped carbon nanodots (NCNDs) were prepared through the one‐step hydrothermal treatment of yeast. Results show that the NCNDs can be used as a new photocatalyst to drive the water‐splitting reaction under UV light. Moreover, the NCNDs can efficiently catalyze the hydrogen evolution reaction. Under visible‐light irradiation, Eosin Y‐sensitized NCNDs exhibit excellent activity for hydrogen evolution. The hydrogen evolution rate of NCNDs (without any modification and co‐catalyst) reaches 107.1 μmol h?1 (2142 μmol g?1 h?1). When Pt is loaded on the NCNDs, the hydrogen evolution rate reaches 491.2 μmol h?1 (9824 μmol g?1 h?1) under visible‐light irradiation. In addition, the NCNDs show excellent fluorescent properties and can be applied as a fluorescent probe for the sensitive and selective detection of Fe3+.  相似文献   

6.
Photocatalytic hydrogenation of biomass‐derived organic molecules transforms solar energy into high‐energy‐density chemical bonds. Reported herein is the preparation of a thiophene‐containing covalent triazine polymer as a photocatalyst, with unique donor‐acceptor units, for the metal‐free photocatalytic hydrogenation of unsaturated organic molecules. Under visible‐light illumination, the polymeric photocatalyst enables the transformation of maleic acid into succinic acid with a production rate of about 2 mmol g?1 h?1, and furfural into furfuryl alcohol with a production rate of about 0.5 mmol g?1 h?1. Great catalyst stability and recyclability are also measured. Given the structural diversity of polymeric photocatalysts and their readily tunable optical and electronic properties, metal‐free photocatalytic hydrogenation represents a highly promising approach for solar energy conversion.  相似文献   

7.
Semiconducting polymer dots (Pdots) have recently attracted considerable attention because of their photocatalytic activity as well as tunable optical band gap. In this contribution, we describe the therapeutic application of Pdots through in situ photocatalytic hydrogen generation. Liposomes were employed as nanoreactors to confine the Pdot photocatalyst, reactants, intermediates, and by‐products. Upon photon absorption by the Pdots, the catalytic cycle is initiated and repeated within the aqueous interior, while the H2 product diffuses across the lipid bilayer to counteract reactive oxygen species (ROS) overexpressed in diseased tissues. Ensemble and single‐particle Förster resonance energy transfer microscopy confirmed the proposed nanoreactor model. We demonstrate that a liposomal nanoreactor containing Pdots and a sacrificial electron donor is a potential photocatalytic nanoreactor for in situ hydrogen therapy.  相似文献   

8.
Cu–1,4‐benzenedioxyacetic acid (Cu‐1,4‐BDOAH2) with a narrow band gap (2.52 eV) was synthesized and doped with Ce to afford Ce:Cu‐1,4‐BDOAH2 as an efficient photocatalyst with narrower band gap (2.39 eV). The prepared Cu‐1,4‐BDOAH2 and Ce:Cu‐1,4‐BDOAH2 were characterized using Fourier transform infrared, energy‐dispersive X‐ray, diffuse reflectance spectroscopies, scanning electron microscopy and X‐ray diffraction. The sonophotocatalytic degradation of diazinon was carried out in a batch‐mode reactor using visible light‐driven Ce:Cu‐1,4‐BDOAH2 photocatalyst as well as ultrasonic irradiation. The narrow band gap of the photocatalyst means that it can be activated under visible light illumination. The effects of operational parameters such as initial diazinon concentration (5–25 mg l?1), pH (2–10), photocatalyst dosage (10–30 mg) and irradiation time (10–30 min) on the sonophotocatalytic degradation efficiency were investigated using central composite design under response surface methodology. The optimization process was studied using desirability function and the results indicated 99.8% degradation, which was obtained at optimum values of 25 mg l?1, 6, 20 mg and 20 min for the initial concentration of diazinon, pH, photocatalyst dosage and irradiation time, respectively. Reusability experiments of Ce:Cu‐1,4‐BDOAH2 photocatalyst showed that it is quite stable with excellent catalytic activity even after five cycles.  相似文献   

9.
A high‐activity AgBr/Ag3PO4 heterojunction photocatalyst was synthesized based on hexadecyltrimethylammonium bromide. Its microspheres were characterized using X‐ray diffractometry, transmission electron microscopy and ultraviolet–visible diffuse reflectance spectroscopy. The new photocatalyst with high photocatalytic activity exceptionally outperforms pure Ag3PO4 and AgBr in methyl orange degradation. The enhancement of photocatalytic activity is attributed to the efficient separation of electron–hole pairs. In this photocatalytic reaction, h+ and ?O2? are the main reactive species that induce visible‐light‐driven degradation.  相似文献   

10.
Semiconductive property of elementary substance is an interesting and attractive phenomenon. We obtain a breakthrough that fibrous phase red phosphorus, a recent discovered modification of red phosphorus by Ruck et al., can work as a semiconductor photocatalyst for visible‐light‐driven hydrogen (H2) evolution. Small sized fibrous phosphorus is obtained by 1) loading it on photoinactive SiO2 fibers or by 2) smashing it ultrasonically. They display the steady hydrogen evolution rates of 633 μmol h?1 g?1 and 684 μmol h?1 g?1, respectively. These values are much higher than previous amorphous P (0.6 μmol h?1 g?1) and Hittorf P (1.6 μmol h?1 g?1). Moreover, they are the highest records in the family of elemental photocatalysts to date. This discovery is helpful for further understanding the semiconductive property of elementary substance. It is also favorable for the development of elemental photocatalysts.  相似文献   

11.
In the present work, bismuth vanadate composited photocatalysts were synthesized and characterized. X‐ray diffractometry and Raman results showed that the particles were well crystallized, and formed by the complex of monoclinic BiVO4 and TiO2. On electron microscopy, the photocatalyst exhibited high crystallization, agglutination and irregular shape, and was surrounded by numerous TiO2 particles. The study of surface areas showed that the specific surface area of 30‐BiVO4/TiO2 composited was 112 m2·g?1, which was nearly 10 times that of pure BiVO4. The ultraviolet–visible diffuse reflectance spectra indicated the composited photocatalyst were activated in visible light. The activity of photocatalytic water splitting was studied. The results showed that monomer BiVO4 photocatalyst was not able to produce hydrogen under any light source. BiVO4/TiO2 composited photocatalysts, however, were capable of generating hydrogen. Under UV light irradiation for 120 min, 1 g catalyst dispersed in 50 mL deionized water produced almost 1 mL hydrogen, such that the productivity of hydrogen was higher than that of P25‐TiO2. Photocatalytic decomposition of water under visible light also confirmed that the BiVO4/TiO2 composited photocatalyst had the ability of water splitting.  相似文献   

12.
Red phosphorus is a promising photocatalyst with wide visible‐light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]‐oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.2 and 17.5 μmol h?1 from pure water under simulated solar light and visible light irradiation, respectively. It was theoretically and experimentally indicated that the strong electronic coupling between PCN and [001]‐oriented HP nanorods gave rise to the enhanced visible light absorption and the greatly accelerated photoinduced electron–hole separation and transfer, which benefited the photocatalytic HER performance.  相似文献   

13.
Bandgap narrowing and a more positive valence band (VB) potential are generally considered to be effective methods for improving visible‐light‐driven photocatalysts because of the significant enhancement of visible‐light absorption and oxidation ability. Herein, an approach is reported for the synthesis of a novel visible‐light‐driven high performance polymer photocatalyst based on band structure control and nonmetal and metal ion codoping, that is, C and Fe‐codoped as a model, by a simple thermal conversion method. The results indicate that compared to pristine graphitic carbon nitride (g‐C3N4), C+Fe‐codoped g‐C3N4 shows a narrower bandgap and remarkable positively shifted VB; as a result the light‐absorption range was expanded and the oxidation capability was increased. Experimental results show that the catalytic efficiency of C+Fe‐codoped g‐C3N4 for photodegradation of rhodamine B (RhB) increased 14 times, compared with pristine g‐C3N4 under visible‐light absorption at λ>420 nm. The synergistic enhancement in C+Fe‐codoped g‐C3N4 photocatalyst could be attributed to the following features: 1) C+Fe‐codoping of g‐C3N4 tuned the bandgap and improved visible‐light absorption; 2) the porous lamellar structure and decreased particle size could provide a high surface area and greatly improve photogenerated charge separation and electron transfer; and 3) both increased electrical conductivity and a more positive VB ensured the superior electron‐transport property and high oxidation capability. The results imply that a high‐performance photocatalyst can be obtained by combining bandgap control and doping modification; this may provide a basic concept for the rational design of high performance polymer photocatalysts with reasonable electronic structures for unique photochemical reaction.  相似文献   

14.
A visible light driven, direct Z‐scheme reduced graphene oxide–Ag3PO4 (RGO–Ag3PO4) heterostructure was synthesized by means of a simple one‐pot photoreduction route by varying the amount of RGO under visible light illumination. The reduction of graphene oxide (GO) and growth of Ag3PO4 took place simultaneously. The effect of the amount of RGO on the textural properties and photocatalytic activity of the heterostructure was investigated under visible light illumination. Furthermore, total organic carbon (TOC) analysis confirmed 97.1 % mineralization of organic dyes over RGO–Ag3PO4 in just five minutes under visible‐light illumination. The use of different quenchers in the photomineralization suggested the presence of hydroxyl radicals ( . OH), superoxide radicals ( . O2?), and holes (h+), which play a significant role in the mineralization of organic dyes. In addition to that, clean hydrogen fuel generation was also observed with excellent reusability. The 4 RGO–Ag3PO4 heterostructure has a high H2 evolution rate of 3690 μmol h?1 g?1, which is 6.15 times higher than that of RGO.  相似文献   

15.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
《中国化学快报》2022,33(3):1303-1307
Titanium dioxide (TiO2) has been limited in photocatalysis due to its wide band gap (3.2 eV) and limited absorption in the ultraviolet range. Therefore, organic components have been introduced to hybrid with TiO2 for enhanced photocatalytic efficiency under visible light. Here, we report that benzo[1,2-b:4,5-b']dithiophene polymer was an ideal organic material for the preparation of a hybrid material with TiO2. The energy band gap of the resulting hybrid material decreased to 2.9 eV and the photocatalytic hydrogen production performance reached 745.0 µmol g?1 h?1 under visible light irradiation. Meanwhile, the material still maintained the stability of hydrogen production performance after 40 h of photocatalytic cycles. The analysis of the transient current response and electrochemical impedance revealed that the main reasons for the enhanced water splitting of the hybrid materials were the faster separation of electron hole pairs and the lower recombination of photocarrier ions. Our findings suggest that polythiophene is a promising organic material for exploring hybrid materials with enhanced photocatalytic hydrogen production.  相似文献   

17.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

18.
The search for metal‐free organic photocatalysts for H2 production from water using visible light remains a key challenge. Reported herein is a molecular structural design of pure organic photocatalysts, derived from conjugated polybenzothiadiazoles, for photocatalytic H2 evolution using visible light. By alternating the substitution position of the electron‐withdrawing benzothiadizole unit on the phenyl unit as a comonomer, various polymers with either one‐ or three‐dimensional structures were synthesized and the effect of the molecular structure on their catalytic activity was investigated. Photocatalytic H2 evolution efficiencies up to 116 μmol h?1 were observed by employing the linear polymer based on a phenyl‐benzothiadiazole alternating main chain, with an apparent quantum yield (AQY) of 4.01 % at 420 nm using triethanolamine as the sacrificial agent.  相似文献   

19.
Graphite carbon nitride(g-C3N4) is a promising non-metal photocatalyst for photocatalytic hydrogen production, but its performance is still limited due to sluggish charges separation and low utilization of light.In this work, P-doped and N-doped carbon dots(NCDs) supported g-C3N4were successfully prepared via hydrothermal and polymerization reactions. The sub-bandgap formed by P-doping enhances the utilization of visible light, and the high electron de...  相似文献   

20.
A visible‐light‐active p–n heterojunction photocatalyst has been synthesized by the enwrapping of poly[aniline‐coN‐(4‐sulfophenyl)aniline] ( PAPSA ) on a coordination polymer nanoparticle ( NCP ). Compared with the visible‐light‐inactive NCP , the new p–n heterojunction photocatalyst, PAPSA/NCP , exhibits a much higher efficiency in the reduction of CrVI under visible light. PAPSA performs two functions in this p–n heterojunction photocatalyst. First, as a visible‐light‐active material, it extends the photoresponse region of the photocatalyst from the ultraviolet to the visible‐light region. Secondly, as a p‐type semiconductor possessing suitable energy levels with respect to NCP , PAPSA forms a p–n heterojunction with the n‐type NCP ; the inner electric field of the p–n heterojunction accelerates the separation of electrons and holes, which enhances the photocatalytic efficiency. Furthermore, the p–n heterojunction photocatalyst exhibits outstanding stability during the photocatalytic reduction of CrVI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号