首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a self‐propelled Janus silica micromotor as a motion‐based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self‐propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s?1. Biotin‐functionalized Janus micromotors can specifically capture and rapidly transport streptavidin‐modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self‐propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab‐on‐chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.  相似文献   

2.
Nano-encapsulation of a poorly soluble anticancer drug was demonstrated with a sonication assisted layer-by-layer polyelectrolyte coating (SLbL). We changed the strategy of LbL-encapsulation from making microcapsules with many layers in the walls for encasing highly soluble materials to using a very thin polycation/polyanion coating on low solubility nanoparticles to provide them with good colloidal stability. SLbL encapsulation of paclitaxel resulted in stable 100-200 nm diameter colloids with a high electrical surface ξ-potential (of -45 mV) and drug content in the nanoparticles of 90 wt%. In the top-down approach, nanocolloids were prepared by rupturing a powder of paclitaxel using ultrasonication and simultaneous sequential adsorption of oppositely charged biocompatible polyelectrolytes. In the bottom-up approach paclitaxel was dissolved in organic solvent (ethanol or acetone), and drug nucleation was initiated by the addition of aqueous polyelectrolyte assisted by ultrasonication. Paclitaxel release rates from such nanocapsules were controlled by assembling multilayer shells with variable thicknesses and were in the range of 10-20 h.  相似文献   

3.
Fabrication of biocompatible core-shell microcapsules in a controllable and scalable manner remains an important but challenging task.Here,we develop a one-step microfluidic approach for the highthroughput production of biocompatible microcapsules,which utilizes single emulsions as templates and controls the precipitation of biocompatible polymer at the water/oil interface.The facile method enables the loading of various oils in the core and the enhancement of polymer shell strength by polyelectrolyte coating.The resulting microcapsules have the advantages of controllability,scalability,biocompatibility,high encapsulation efficiency and high loading capacity.The core-shell microcapsules are ideal delivery vehicles for programmable active release and various controlled release mechanisms are demonstrated,including burst release by vigorous shaking,pH-triggered release for targeted intestinal release and sustained release of perfume over a long period of time.The utility of our technique paves the way for practical applications of core-shell microcapsules.  相似文献   

4.
The authors report dynamic and coagulation properties of a dispersion of polyelectrolyte multilayer microcapsules filled with solutions of a strong polyelectrolyte. Microcapsules are shown to take a charge of the sign of encapsulated polyions and are characterized by a nonuniform distribution of inner polyions, which indicates a semipermeability of the shell and a leakage of counterions. The capsule self-diffusion coefficient in the vicinity of the similarly charged wall is measured using a particle tracking procedure from confocal images of the dispersion. The diffusion of capsules in the force field suggests that the effective interaction potential contains an electrostatic barrier, so that we deal with the same types of interaction forces as for solid particles. The theoretical estimates of the authors show that when microcapsules are in close proximity, their interaction should even be quantitatively the same as that of colloids with the same surface potential. However, due to the mobility of inner polyions they might repel stronger at large distances. The authors thus conclude that the encapsulation of charged polymers is an important factor in determining the adhesion and interaction properties of multilayer microcapsules.  相似文献   

5.
Ever since their invention in 1998, polyelectrolyte multilayer micro- and nano-capsules have impacted various areas of biology, chemistry and physics. Here we highlight progress achieved since the millennium in the areas of encapsulation in and release from microcapsules, describe various structures including multicompartment and anisotropic constructs, and provide examples of several applications in biology. We also describe application areas such as drug delivery, intracellular trafficking, enzyme-catalyzed reactions, mechano-biology which benefited from recent developments in the area of polyelectrolyte multilayer capsules.  相似文献   

6.
We use single emulsions as templates to fabricate monodisperse biocompatible microcapsules with a water core. These microcapsules are fabricated using FDA-approved polymer and non-toxic solvents and are of great use in drugs, cosmetics and foods.  相似文献   

7.
Uniform-sized biodegradable PLA/PLGA microcapsules loading recombinant human insulin (rhI) were successfully prepared by combining a Shirasu Porous Glass (SPG) membrane emulsification technique and a double emulsion-evaporation method. An aqueous phase containing rhI was used as the inner water phase (w1), and PLA/PLGA and Arlacel 83 were dissolved in a mixture solvent of dichloromethane (DCM) and toluene, which was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a SPG membrane into an outer water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 droplets. The solid polymer microcapsules were obtained by simply evaporating solvent from droplets. Various factors of the preparation process influencing the drug encapsulation efficiency and the drug cumulative release were investigated systemically. The results indicated that the drug encapsulation efficiency and the cumulative release were affected by the PLA/PLGA ratio, NaCl concentration in outer water phase, the inner water phase volume, rhI-loading amount, pH-value in outer water phase and the size of microcapsules. By optimizing the preparation process, the drug encapsulation efficiency was high up to 91.82%. The unique advantage of preparing drug-loaded microcapsules by membrane emulsification technique is that the size of microcapsules can be controlled accurately, and thus the drug cumulative release profile can be adjusted just by changing the size of microcapsules. Moreover, much higher encapsulation efficiency can be obtained when compared with the conventional mechanical stirring method.  相似文献   

8.
A catalytic polymer multilayer shell motor has been developed, which effects fast motion‐based separation of charged organics in water. The shell motors are fabricated by sputtering platinum onto the exposed surface of silica templates embedded in Parafilm, followed by layer‐by‐layer assembly of polyelectrolyte multilayers to the templates. The catalytic shell motors display high bubble propulsion with speeds of up to 260 μm s?1 (13 body lengths per second). Moreover, the polyelectrolyte multilayers assembled at high pH (pH>9.0) adsorb approximately 89 % of dye molecules from water, owing to the electrostatic interaction between the positively charged polymers and the anionic dye molecules, and subsequently release them at neutral pH in a microfluidic device. The efficient propulsion coupled with the effective adsorption behavior of the catalytic shell motors in a microfluidic device results in accelerated separation of organics in water and thus holds considerable promise for water analysis.  相似文献   

9.
We report on a novel method for the encapsulation of highly water soluble materials by using layer-by-layer (LbL) polyelectrolyte self-assembly. State of the art polyelectrolyte self-assembly LbL coating and encapsulation methods are only applicable to insoluble or poorly water soluble template materials, because the process is performed in water causing dissolution of the solid template. Our method extends the material spectrum to highly water soluble template materials by using non-ionized polyelectrolytes in an organic phase (reverse-phase) instead of polyelectrolyte salts in an aqueous environment. By using the reverse-phase layer-by-layer (RP-LbL) technique, we have demonstrated the direct encapsulation of proteins, glucose, vitamin C, and inorganic salts in the solid state. Multilayer deposition was proven, layer thickness was determined by AFM, and the advantage of the method to prepare powders of encapsulated materials was demonstrated. The method is simple, robust, and applicable to a broad range of substances with potential applications in several industries.  相似文献   

10.
An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields.  相似文献   

11.
Hollow microcapsules fabricated by layer-by-layer assembly (LbL) using oppositely charged polyelectrolytes have figured in studies towards the design of novel drug delivery systems. The possibility of loading a fair amount of active component of poor aqueous solubility is one of the encouraging factors on the wide spread interest of this emerging technology. Curcumin has potent anti-cancer properties. Clinical application of this efficacious agent in cancer and other diseases has been limited due to poor aqueous solubility and consequently minimal systemic bioavailability. LbL constructed polyelectrolyte microcapsules based drug delivery systems have the potential for dispersing hydrophobic agent like curcumin in aqueous media. Here we report the preparation of LbL assembled microcapsules composed of poly(sodium 4-styrene sulfonic acid) and poly(ethylene imine) one after another. The microcapsules were characterized using various analytical techniques. Curcumin was encapsulated in these microcapsules and the efficacy of the released curcumin was studied using L929 cells.  相似文献   

12.
Layer-by-layer assembled polyelectrolyte microcapsules are of great interest because they can possibly be used as microcontainers and they show interesting stimuli-responsive properties, which have been recently investigated. Here, we exploit capsules which are made temperature-sensitive by encapsulating poly(N-isopropylacrylamide) (PNIPAM). PNIPAM has a cloud point in water at about 32 degrees C, above which it collapses and is insoluble in water. Further this temperature responsiveness can be tuned by addition of various ions at various concentrations. Here, we present the encapsulation of PNIPAM inside polyelectrolyte microcapsules, and describe the dependence of the lower critical solution temperature (LCST) on the nature and the amount of different salts added. With this information, we demonstrate the ability to tune and finely control the collapse of encapsulated PNIPAM. In this light, this system could be used as a microsensor or drug- delivery system.  相似文献   

13.
In this article, the development of a novel technique to fabricate spherical polymeric microcapsules by utilizing microfluidic technology is presented. Atom transfer radical polymerization (ATRP) was employed to synthesize well-defined amphiphilic block copolymers. An organic polymer solution was constrained to adopt the spherical droplets in a continuous water phase at a T-junction microchannel, and the generation of the droplets was studied quantitatively. The flow conditions of two immiscible solutions were adjusted for the successful generation of the polymer droplets. The morphology of the microcapsules was examined. The efficiency of these polymer microcapsules as containers for the storage and controlled release of loaded molecules was evaluated by encapsulating the microcapsules with Congo-red dye and investigating the release performance using temperature controlled UV-VIS spectroscopy.  相似文献   

14.
pH‐Controlled encapsulation in and release of macromolecules from polyelectrolyte capsules of a few microns in diameter is demonstrated. Capsules were prepared via alternating adsorption of the oppositely charged polymers poly(allylamine hydrochloride) and poly(styrene sulfonate) onto decomposable melamin formaldehyde cores. The capsules were open for macromolecules at pH values below 6 and closed at pH > 8.  相似文献   

15.
The design of porous microcapsules with selective mass transfer and mechanical robustness for enzyme encapsulation is highly desired for biocatalysis, yet the construction remains challenging. Herein, we report the facile fabrication of porous microcapsules by assembling covalent organic framework (COF) spheres at the interfaces of emulsion droplets followed by interparticle crosslinking. The COF microcapsules could offer an enclosed aqueous environment for enzymes, with size-selective porous shells that allow for the fast diffusion of substrates and products while excluding larger molecules such as protease. Crosslinking of COF spheres not only enhances the structural stability of capsules but also imparts enrichment effects. The enzymes encased in the COF microcapsules show enhanced activity and durability in organic media as verified in both batch reaction and continuous-flow reaction. The COF microcapsules offer a promising platform for the encapsulation of biomacromolecules.  相似文献   

16.
应用壳聚糖-海藻酸盐微囊技术制备了一系列胰岛素微囊,并研究了不同反应条件如海藻酸钠浓度、壳聚糖浓度、壳聚糖分子量及壳聚糖溶液pH值对微囊的胰岛素包封率及其释放性能的影响。结果表明,海藻酸钠浓度越高,微囊对胰岛素的包封率越高,在模拟小肠液中释放速率越低;壳聚糖浓度越大,微囊的胰岛素包封率及其在模拟胃液中释放率越高,在模拟肠液中释放达最大值所需时间越长;而随壳聚糖分子量减小,微囊在胃液中释放率增高;壳聚糖溶液pH值的变化对微囊的胰岛素包封率未造成明显影响。  相似文献   

17.
We report the preparation, characterization, and mechanical properties of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. The shells of these microcapsules are composed either by alternating poly(styrenesulfonate) (PSS) and positively charged dendrimer G4(NH+Et2Cl-)96 or by alternating poly(allylamine hydrochloride) (PAH) and negatively charged dendrimer G4(CH-COO-Na+)96. The same multilayers were constructed on planar support to examine their layer-by-layer growth and to measure the multilayer thickness. Surface plasmon resonance spectroscopy (SPR) showed regular linear growth of the assembly upon each bilayer deposited. We probe the mechanical properties of these polyelectrolyte/dendrimer microcapsules by measuring force-deformation curves with the atomic force microscope (AFM). The experiment suggests that they are much softer than PSS/PAH microcapsules studied before. This softening is attributed to an enhanced permeability of the polyelectrolyte/dendrimer multilayer shells as compared with multilayers formed by linear polyelectrolytes. In contrast, Young's modulus of both dendrimer-based multilayers was found to be on the same order as that of PSS/PAH multilayers.  相似文献   

18.
研究了胶束增强型的聚电解质胶囊对正电荷小分子罗丹明B的包埋和释放情况. 胶囊对正电荷水溶性物质罗丹明B的包埋动力学和包埋量的研究结果表明, 这种胶束增强型聚电解质胶囊能够快速而高效地包埋水溶性物质. 释放研究结果表明, 胶囊在不同的pH条件下的释放行为有一定的区别, 但趋势相同, 分为突释区、释放诱导区、快速释放区和缓释区, 呈现多区释放, 前期胶囊的突释现象相当明显. 同时, 盐离子的浓度对胶囊的释放行为影响不大.  相似文献   

19.
We prepared microcapsules through an organic solvent‐free interfacial polymerization method, which avoids the release of volatile organic compounds arising from conventional interfacial polymerization methods for microencapsulation. These microcapsules have single and narrow particle size distribution and are spherical pellets with smooth and intact shell, and own excellent biodegradability. Additionally, these biodegradable microcapsules have a higher encapsulation efficiency compared with the microcapsules prepared through conventional interfacial polymerization method and possess sustained and controlled release of core materials.  相似文献   

20.
A strategy to incorporate and release anti-cancer drugs of daunorubicin (DNR) and doxorubicin (DOX) in preformed microcapsules is introduced, which is based on charge interaction mechanism. Oppositely charged poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) were assembled onto PSS doped-CaCO3 colloidal particles in a layer-by-layer manner to yield core-shell particles. After removal of the carbonate cores, hollow microcapsules with entrapped PSS were fabricated, which showed spontaneous loading ability of positively charged DNR and DOX. The drug loading was confirmed quantitatively by observations under confocal laser scanning microscopy, transmission electron microscopy and scanning force microscopy. Quantification of the drug loading was performed under different conditions, revealing that a larger amount of drugs could be incorporated at higher drug feeding concentrations and higher salt concentrations. However, putting additional polyelectrolyte layers on the microcapsules after core removal resulted in weaker drug loading efficiency. The drug release behaviors from the microcapsules with different layer numbers were studied too, revealing a diffusion controlled release mechanism at the initial stage (4 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号