首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: Single polyelectrolyte component microcapsules and multilayers, exemplified by poly(allylamine hydrochloride) (PAH), have been prepared using a method of glutaraldehyde (GA)‐mediated covalent layer‐by‐layer (LbL) assembly. The GA cross‐linking of the adsorbed PAH results in surfaces covered by reactive aldehyde groups, which can then react with PAH to result in another layer of covalently linked PAH. The repeated assembly of single polyelectrolyte in an LbL manner can be thus achieved. The PAH multilayers can grow linearly along with the layer number, and their thickness can be controlled at the nanometer scale, as verified by UV‐vis absorption spectrometry and ellipsometry. Single polyelectrolyte microcapsules are obtained after removal of the template cores at low pH. The morphology and integrity are confirmed by scanning force microscopy and confocal laser scanning microscopy.

Schematic illustration of the preparation of a single polyelectrolyte component microcapsule by GA‐mediated covalent LbL assembly.  相似文献   


2.
以简单、快速的微流控酶促反应方法实现了尿素浓度的可视化检测。 在微流控双水相液滴流动中,利用脲酶水解尿素生成碳酸铵使液滴内的中性红指示剂变色,并对液滴颜色强度进行分析来确定待测样品中尿素的浓度,检测范围可达到0~50 mg/mL。 双水相体系克服了传统油水分析检测平台生物相容性低的缺陷。 液滴流以较少的试剂消耗、极大的比表面积、微米级的扩散距离大大提高了反应速率,导致了较快的分析检测速度,将检测时间缩短为20 s左右。 为应用化学领域的尿素快速分析检测提供借鉴和参考。  相似文献   

3.
4.
Temperature responsive poly(N‐isopropylmethacrylamide) (pNIPMAm) microgel capsules around 1 µm containing multiple poly(N‐isopropylacrylamide) (pNIPAm) nanoinclusions were prepared. This structure was achieved through the addition of a cross‐linked pNIPMAm shell to stable, monodispersed aggregates of pNIPAm chains. This one‐pot synthetic approach resulted in core/shell microgels at high temperature wherein only the shell (pNIPMAm) component contained stable, covalent cross‐links between chains. Thus, upon decreasing the temperature following synthesis, the majority of the encapsulated pNIPAm chains escaped from the shell, resulting in nearly hollow microcapsules. Remnant pNIPAm segments in the microcapsule then form nanoparticulate inclusions upon raising the temperature.

  相似文献   


5.
6.
Layer‐by‐layer (LbL) assembly was conducted on CaCO3 microparticles pre‐doped with polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) micelles, and resulted in micelles encapsulation in the microcapsules after core removal. Distribution of the micelles in the templates and capsules was characterized by transmission electron microscopy and confocal laser scanning microscopy. The micelles inside the capsules connected with each other to form a chain and network‐like structure with a higher density near the capsule walls. The hydrophobic PS cores were then able to load small uncharged hydrophobic drugs while the negatively charged PAA corona could induce spontaneous deposition of water‐soluble positively charged drugs such as doxorubicin.

  相似文献   


7.
Alginate‐chitosan microcapsules to control the release of Tramadol‐HCl were prepared using two different methods. In the two‐stage procedure (Variant I) alginate was first pumped into a CaCl2/NaCl solution and then transferred into a chitosan solution. In the one‐stage procedure (Variant II) alginate was directly pumped into a chitosan/CaCl2 solution, and different behavior could be noted in each case. The microcapsules were spherical in both variants and they swelled to a greater extent in a basic medium as compared to an acid one. The drug release profile of Tramadol from microcapsules in simulated gastric fluid and simulated intestinal fluid was also studied. The maximum release of Tramadol at 24 h was 64% and 86% for Variant I and II, respectively, in simulated intestinal fluid. Release was adjusted using the power law of the semi‐empirical Peppas equation in order to gain information about the release mechanism. In both cases the values of the exponent were found to be between 0.53 and 0.84 for swellable microcapsules in simulated gastric and intestinal fluids, respectively, indicating anomalous drug transport for both variants. The good results obtained with alginate‐chitosan microcapsules are comparable to those of the best products so far described in the scientific bibliography and in addition, chitosan is useful in pharmacy.

Surface morphology of Tramadol‐loaded microcapsule.  相似文献   


8.
Multicompartmental responsive microstructures with the capability for the pre‐programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual‐responsive blocks (temperature for poly(N‐isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2‐vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water‐soluble hydrophilic macromolecules. For these dual‐loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out‐of‐shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out‐of‐core release (pH). Reversing stimulus order completely alters the release process.  相似文献   

9.
The fabrication of stable colloidosomes derived from water‐in‐water Pickering‐like emulsions are described that were produced by addition of fluorescent amine‐modified polystyrene latex beads to an aqueous two‐phase system consisting of dextran‐enriched droplets dispersed in a PEG‐enriched continuous phase. Addition of polyacrylic acid followed by carbodiimide‐induced crosslinking with dextran produces hydrogelled droplets capable of reversible swelling and selective molecular uptake and exclusion. Colloidosomes produced specifically in all‐water systems could offer new opportunities in microencapsulation and the bottom‐up construction of synthetic protocells.  相似文献   

10.
11.
We report on the formation of coacervate droplets from poly(diallyldimethylammonium chloride) with either adenosine triphosphate or carboxymethyl‐dextran using a microfluidic flow‐focusing system. The formed droplets exhibit improved stability and narrower size distributions for both coacervate compositions when compared to the conventional vortex dispersion techniques. We also demonstrate the use of two parallel flow‐focusing channels for the simultaneous formation and co‐location of two distinct populations of coacervate droplets containing different DNA oligonucleotides, and that the populations can coexist in close proximity up to 48 h without detectable exchange of genetic information. Our results show that the observed improvements in droplet stability and size distribution may be scaled with ease. In addition, the ability to encapsulate different materials into coacervate droplets using a microfluidic channel structure allows for their use as cell‐mimicking compartments.  相似文献   

12.
13.
The fabrication of photo‐degradable, protein–polyelectrolyte complex (PPC)‐coated, mesoporous silica nanoparticles (MSNs) and their controlled co‐release of protein and model drugs is reported. Random copolymers composed of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), and a photolabile o‐nitrobenzyl‐containing monomer, 5‐(2′‐(dimethylamino)ethoxy)‐2‐nitrobenzyl methacrylate (DENBMA), are first anchored onto the MSNs and then quaternary aminated, to obtain positively charged P(OEGMA‐co‐TENBMA) which exhibits photo‐induced charge conversion characteristics. PPCs consisting of P(OEGMA‐co‐TENBMA) and the protein bovine serum albumin (BSA) are utilized as capping agents for the nanopores of the MSNs. Upon UV irradiation, charge conversion of P(OEGMA‐co‐TENBMA) can lead to the disruption of PPCs on MSNs and co‐release of BSA and rhodamine B by electrostatic repulsion.  相似文献   

14.
Different techniques are being developed for fabricating microcapsules; it is still a challenge to fabricate them in an efficient and environment‐friendly process. Here, a one‐step green route to synthesize silk protein sericin‐based microcapsules without any assistance of organic solvents is reported. By carefully changing the concentration of calcium ions accompanied with stirring, the morphology of the microcapsules can easily be regulated to form either discoidal, biconcave, cocoon‐like, or tubular structures. The chelation of Ca2+ and shearing force from agitation may induce the conformational transformation of sericin, which possibly results in the formation of microcapsules through the self‐assembly of the protein subsequently. The as‐prepared cocoon‐like microcapsules exhibit pH‐dependent stability. A potential application of microcapsules being fabricated from natural water‐soluble silk protein sericin for controlled bioactive molecules loading and release system by a pH‐triggered manner is quite feasible.

  相似文献   


15.
16.
The interaction of biocompatible, exponentially grown films composed of poly‐L ‐lysine (PLL) and hyaluronic acid (HA) polymers with gold nanoparticles and microcapsules is studied. Both aggregated and non‐aggregated nanoparticle states are achieved; desorption of PLL accounts for aggregation of nanoparticles. The presence of aggregates of gold nanoparticles on films enables remote activation by near‐infrared irradiation due to local, nanometer confined heating. Thermally shrunk microcapsules, which are remarkably monodisperse upon preparation but gain polydispersity after months of storage, are also adsorbed onto films. PLL polymers desorbed from films interact with microcapsules introducing a charge imbalance which leads to an increase of the microcapsule size, thus films amplify this effect. Multifunctional, biocompatible, thick gel films with remote activation and release capabilities are targeted for cell cultures in biology and tissue engineering in medicine.  相似文献   

17.
We report on the fabrication of pH‐disintegrable polyelectrolyte multilayer‐coated mesoporous silica nanoparticles (MSN) capable of triggered co‐release of cisplatin and model drug molecules. The outer polyelectrolyte multilayer was assembled from permanently cationic polyelectrolyte, poly(allyl amine hydrochloride) (PAH), and negatively charged polyelectrolyte, P(DMA‐co‐TPAMA), consisting of N,N‐dimethylacrylamide (DMA) and 3,4,5,6‐tetrahydrophthalic anhydride‐functionalized N‐(3‐aminopropyl)methacrylamide (TPAMA) monomer units, which exhibits pH‐induced charge conversion characteristics. Thus, the subtle alteration of solution pH from 7.4 to ≈5–6 can lead to the disintegration of outer polyelectrolyte multilayers, accompanied with the co‐release of cisplatin and RhB.

  相似文献   


18.
19.
Incubation of CaCO3 microparticles in chitosan (CS) solution at pH 5.2 and following with ethylenediaminetetraacetic acid disodium salt (EDTA) treatment resulted in CS single‐component microcapsules with an ultra‐thick wall structure. Repeating the incubation caused stepwise increase of wall thickness and finally resulted in CS microcapsules with a layered structure. This unique method is mediated by precipitation of CS on the CaCO3 particles as a result of pH increase caused by the partial dissolution of CaCO3. The obtained CS capsules are stable at neutral pH.  相似文献   

20.
A polymer–surfactant micellar complex has been studied as a fluorescence resonance energy transfer (FRET) donor to fluorescein‐labeled DNA (ssDNA‐Fl). In water, the molar absorptivity and fluorescence quantum efficiency of cationic poly(fluorene‐co‐phenylene) (c‐PFP) are substantially increased in the presence of non‐ionic surfactants. A TEM microscopic study shows the formation of a nanowire micellar complex of c‐PFP and the surfactants. About a 400% enhancement of the FRET signal is measured in c‐PFP/ssDNA‐Fl with Brij 30, relative to that without surfactants. The signal amplification is successfully modulated using different types of non‐ionic surfactants which perturb the complexation, fine‐structure of the complex (i.e., donor‐acceptor separation), and the resulting energy transfer process.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号