首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological ion channels and ion pumps with sub‐nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub‐nanometer solid‐state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin‐based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular‐size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid‐state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   

2.
Metal–organic frameworks (MOFs) are a promising class of nanoporous polymeric materials. However, the processing of such fragile crystalline powders into desired shapes for further applications is often difficult. A photoinduced postsynthetic polymerization (PSP) strategy was now employed to covalently link MOF crystals by flexible polymer chains, thus endowing the MOF powders with processability and flexibility. Nanosized UiO‐66‐NH2 was first functionalized with polymerizable functional groups, and its subsequent copolymerization with monomers was easily induced by UV light under solvent‐free and mild conditions. Because of the improved interaction between MOF particles and polymer chains, the resulting stand‐alone and elastic MOF‐based PSP‐derived membranes possess crack‐free and uniform structures and outstanding separation capabilities for CrVI ions from water.  相似文献   

3.
4.
5.
Metal–organic frameworks (MOFs) have emerged as porous solids of a superior type for the fabrication of membranes. However, it is still challenging to prepare a uniformly dispersed robust MOF hybrid membrane. Herein, we propose a simple and powerful strategy, namely, coordination‐driven in situ self‐assembly, for the fabrication of MOF hybrid membranes. On the basis of the coordination interactions between metal ions and ligands and/or the functional groups of the organic polymer, this method was confirmed to be feasible for the production of a stable membrane with greatly improved MOF‐particle dispersion in and compatibility with the polymer, thus providing outstanding separation ability. As an experimental proof of concept, a high‐quality ZIF‐8/PSS membrane was fabricated that showed excellent performance in the nanofiltration and separation of dyes from water.  相似文献   

6.
Chiral ZIF‐8 hollow nanospheres with d ‐histidine as part of chiral ligands (denoted as H‐d ‐his‐ZIF‐8) were prepared for separation of (±)‐amine acids. Compared to bulk d ‐his‐ZIF‐8 without a hollow cavity, the prepared H‐d ‐his‐ZIF‐8 showed 15 times higher separation capacity and higher ee values of 90.5 % for alanine, 95.2 % for glutamic acid and 92.6 % for lysine, respectively.  相似文献   

7.
Fluorocarbons have important applications in industry, but are environmentally unfriendly, and can cause ozone depletion and contribute to the global warming with long atmospheric lifetimes and high global warming potential. In this work, the metal–organic framework UiO‐66(Zr) is demonstrated to have excellent performance characteristics to separate fluorocarbon mixtures at room temperature. Adsorption isotherm measurements of UiO‐66(Zr) display high fluorocarbon sorption uptakes of 5.0 mmol g?1 for R22 (CHClF2), 4.6 mmol g?1 for R125 (CHF2CF3), and 2.9 mmol g?1 for R32 (CH2F2) at 298 K and 1 bar. Breakthrough data obtained for binary (R22/R32 and R32/R125) and ternary (R32/R125/R134a) mixtures reveal high selectivities and capacities of UiO‐66(Zr) for the separation and recycling of these fluorocarbon mixtures. Furthermore, the UiO‐66(Zr) saturated with R22 and R125 can be regenerated at temperatures as low as 120 °C with excellent desorption–adsorption cycling stabilities.  相似文献   

8.
We present a new metal–organic framework (MOF) built from lanthanum and pyrazine‐2,5‐dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2] ? 2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single‐crystal X‐ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g?1 MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF.  相似文献   

9.
Coordinatively unsaturated FeIII metal sites were successfully incorporated into the iconic MOF‐5 framework. This new structure, FeIIIiMOF‐5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single‐crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid‐state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed FeIII, whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the FeIII ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate ZnII within the MOF‐5 SBU. This new MOF structure displays the potential for metal‐site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials.  相似文献   

10.
Microporous metal–organic frameworks (MOFs) are comparatively new porous materials. Because the pores within such MOFs can be readily tuned through the interplay of both metal‐containing clusters and organic linkers to induce their size‐selective sieving effects, while the pore surfaces can be straightforwardly functionalized to enforce their different interactions with gas molecules, MOF materials are very promising for gas separation. Furthermore, the high porosities of such materials can enable microporous MOFs with optimized gas separation selectivity and capacity to be targeted. This Focus Review highlights recent significant advances in microporous MOFs for gas separation.  相似文献   

11.
Endowed with chiral channels and pores, chiral metal–organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality‐enriched MOFs with accessible pores. The ability of the materials to form host–guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed‐matrix membranes (MMMs) composed of chirality‐enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation.  相似文献   

12.
A stable metal–organic framework pillared by Keggin‐type polyoxometalate, Cu6(Trz)10(H2O)4[H2SiW12O40]?8 H2O (Trz=1,2,4‐triazole) ( 1 ), has been prepared under hydrothermal condition. The 2D layer structure with a 22‐member ring was formed by Cu2+ ions, which are connected with each other via the Trz ligands on the ab plane. Thus, the 2D layers are further interconnected through Keggin polyoxoanions to generate a 3D porous network with a small 1D channel. Moreover, the presence of polyoxoanions make it exhibit selective adsorption of water and proton‐conducting properties. Additionally it showed efficient intrinsic peroxidase‐like activity, providing a simple and sensitive colorimetric assay to detect H2O2.  相似文献   

13.
Separation methods based on 2D interlayer galleries are currently gaining widespread attention. The potential of such galleries as high‐performance gas‐separation membranes is however still rarely explored. Besides, it is well recognized that gas permeance and separation factor are often inversely correlated in membrane‐based gas separation. Therefore, breaking this trade‐off becomes highly desirable. Here, the gas‐separation performance of a 2D laminated membrane was improved by its partial self‐conversion to metal–organic frameworks. A ZIF‐8‐ZnAl‐NO3 layered double hydroxide (LDH) composite membrane was thus successfully prepared in one step by partial conversion of the ZnAl‐NO3 LDH membrane, ultimately leading to a remarkably enhanced H2/CH4 separation factor and H2 permeance.  相似文献   

14.
Metal–organic frameworks (MOFs) are suitable enzyme immobilization matrices. Reported here is the in situ biomineralization of glucose oxidase (GOD) into MOF crystals (ZIF‐8) by interfacial crystallization. This method is effective for the selective coating of porous polyethersulfone microfiltration hollow fibers on the shell side in a straightforward one‐step process. MOF layers with a thickness of 8 μm were synthesized, and fluorescence microscopy and a colorimetric protein assay revealed the successful inclusion of GOD into the ZIF‐8 layer with an enzyme concentration of 29±3 μg cm?2. Enzymatic activity tests revealed that 50 % of the enzyme activity is preserved. Continuous enzymatic reactions, by the permeation of β‐d ‐glucose through the GOD@ZIF‐8 membranes, showed a 50 % increased activity compared to batch experiments, emphasizing the importance of the convective transport of educts and products to and from the enzymatic active centers.  相似文献   

15.
16.
A calixarene‐based metal–organic framework (Zr‐cal, [Zr6O4(OH)4(FA)6]2(cal)3], FA=formate, cal=1,3‐alt‐25,26,27,28‐tetrakis[(carboxy)methoxy]calixarene) was synthesized and characterized by single‐crystal X‐ray diffraction. The three‐dimensional framework is a 4,6‐connected network of gar topology and exhibits two equal but nonintersecting three‐dimensional pore systems. It has a specific BET surface area of 670 m2 g?1, and the calixarene cavities are accessible through the pore systems. The exposed calixarenes can be used for the visual detection and encapsulation of NO2 through the formation of deeply colored charge–transfer complexes inside the MOF. The highly selective complexation was analyzed by UV/Vis and IR spectroscopy, and the stability of the material was confirmed by powder X‐ray diffraction and 1H NMR spectroscopy. Finally, the MOF was used as a sensor material in a home‐made sensor cell and showed high sensitivity for NO2.  相似文献   

17.
A key challenge faced by organic electrodes is how to promote the redox reactions of functional groups to achieve high specific capacity and rate performance. Here, we report a two‐dimensional (2D) microporous covalent–organic framework (COF), poly(imide‐benzoquinone), via in situ polymerization on graphene (PIBN‐G) to function as a cathode material for lithium‐ion batteries (LIBs). Such a structure favors charge transfer from graphene to PIBN and full access of both electrons and Li+ ions to the abundant redox‐active carbonyl groups, which are essential for battery reactions. This enables large reversible specific capacities of 271.0 and 193.1 mAh g?1 at 0.1 and 10 C, respectively, and retention of more than 86 % after 300 cycles. The discharging/charging process successively involves 8 Li+ and 2 Li+ in the carbonyl groups of the respective imide and quinone groups. The structural merits of PIBN‐G will trigger more investigations into the designable and versatile COFs for electrochemistry.  相似文献   

18.
Herein, we present a Ca‐based metal–organic framework named AEPF‐1, which is an active and selective catalyst in olefin hydrogenation reactions. AEPF‐1 exhibits a phase transition upon desorption of guest molecules. This structural transformation takes place by a crystal to crystal transformation accompanied by the loss of single‐crystal integrity. Powder diffraction methods and computational studies were applied to determine the structure of the guest‐free phase. This work also presents data on the exceptional adsorption behavior of this material, which is shown to be capable of separating polar from nonpolar organic solvents, and is a good candidate for selective solvent adsorption under mild conditions.  相似文献   

19.
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium‐ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.  相似文献   

20.
Metal–organic framework (MOF) materials have an enormous potential in separation applications, but to realize their potential as semipermeable membranes they need to be assembled into thin continuous macroscopic films for fabrication into devices. By using a facile immersion technique, we prepared ultrathin, continuous zeolitic imidazolate framework (ZIF‐8) membranes on titania‐functionalized porous polymeric supports. The coherent ZIF‐8 layer was surprisingly flexible and adhered well to the support, and the composite membrane could sustain bending and elongation. The membranes exhibited molecular sieving behavior, close to the theoretical permeability of ZIF‐8, with hydrogen permeance up to 201×10?7 mol m?2 s?1 Pa?1 and an ideal H2/CO2 selectivity of 7:1. This approach offers significant opportunities to exploit the unique properties of MOFs in the fabrication of separation and sensing devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号