首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NiII‐mediated tautomerization of the N‐heterocyclic hydrosilylcarbene L2Si(H)(CH2)NHC 1 , where L2=CH(C?CH2)(CMe)(NAr)2, Ar=2,6‐iPr2C6H3; NHC=3,4,5‐trimethylimidazol‐2‐yliden‐6‐yl, leads to the first N‐heterocyclic silylene (NHSi)–carbene (NHC) chelate ligand in the dibromo nickel(II) complex [L1Si:(CH2)(NHC)NiBr2] 2 (L1=CH(MeC?NAr)2). Reduction of 2 with KC8 in the presence of PMe3 as an auxiliary ligand afforded, depending on the reaction time, the N‐heterocyclic silyl–NHC bromo NiII complex [L2Si(CH2)NHCNiBr(PMe3)] 3 and the unique Ni0 complex [η2(Si‐H){L2Si(H)(CH2)NHC}Ni(PMe3)2] 4 featuring an agostic Si? H→Ni bonding interaction. When 1,2‐bis(dimethylphosphino)ethane (DMPE) was employed as an exogenous ligand, the first NHSi–NHC chelate‐ligand‐stabilized Ni0 complex [L1Si:(CH2)NHCNi(dmpe)] 5 could be isolated. Moreover, the dicarbonyl Ni0 complex 6 , [L1Si:(CH2)NHCNi(CO)2], is easily accessible by the reduction of 2 with K(BHEt3) under a CO atmosphere. The complexes were spectroscopically and structurally characterized. Furthermore, complex 2 can serve as an efficient precatalyst for Kumada–Corriu‐type cross‐coupling reactions.  相似文献   

2.
A study on the reactivity of the N-heterocyclic silylene Dipp2NHSi (1,3-bis(diisopropylphenyl)-1,3-diaza-2-silacyclopent-4-en-2-yliden) with the transition metal complexes [Ni(CO)4], [M(CO)6] (M=Cr, Mo, W), [Mn(CO)5(Br)] and [(η5-C5H5)Fe(CO)2(I)] is reported. We demonstrate that N-heterocyclic silylenes, the higher homologues of the now ubiquitous NHC ligands, show a remarkably different behavior in coordination chemistry compared to NHC ligands. Calculations on the electronic features of these ligands revealed significant differences in the frontier orbital region which lead to some peculiarities of the coordination chemistry of silylenes, as demonstrated by the synthesis of the dinuclear, NHSi-bridged complex [{Ni(CO)2(μ-Dipp2NHSi)}2] ( 2 ), complexes [M(CO)5(Dipp2NHSi)] (M=Cr 3 , Mo 4 , W 5 ), [Mn(CO)3(Dipp2NHSi)2(Br)] ( 9 ) and [(η5-C5H5)Fe(CO)2(Dipp2NHSi-I)] ( 10 ). DFT calculations on several model systems [Ni(L)], [Ni(CO)3(L)], and [W(CO)5(L)] (L=NHC, NHSi) reveal that carbenes are typically the much better donor ligands with a larger intrinsic strength of the metal–ligand bond. The decrease going from the carbene to the silylene ligand is mainly caused by favorable electrostatic contributions for the NHC ligand to the total bond strength, whereas the orbital interactions were often found to be higher for the silylene complexes. Furthermore, we have demonstrated that the contribution of σ- and π-interaction depends significantly on the system under investigation. The σ-interaction is often much weaker for the NHSi ligand compared to NHC but, interestingly, the π-interaction prevails for many NHSi complexes. For the carbonyl complexes, the NHSi ligand is the better σ-donor ligand, and contributions of π-symmetry play only a minor role for the NHC and NHSi co-ligands.  相似文献   

3.
The synthesis of an N‐heterocyclic silylene‐stabilized digermanium(0) complex is described. The reaction of the amidinate‐stabilized silicon(II) amide [LSiN(SiMe3)2] ( 1 ; L=PhC(NtBu)2) with GeCl2?dioxane in toluene afforded the SiII–GeII adduct [L{(Me3Si)2N}Si→GeCl2] ( 2 ). Reaction of the adduct with two equivalents of KC8 in toluene at room temperature afforded the N‐heterocyclic carbene silylene‐stabilized digermanium(0) complex [L{(Me3Si)2N}Si→ Ge?Ge←Si{N(SiMe3)2}L] ( 3 ). X‐ray crystallography and theoretical studies show conclusively that the N‐heterocyclic silylenes stabilize the singlet digermanium(0) moiety by a weak synergic donor–acceptor interaction.  相似文献   

4.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   

5.
The coordination geometry of the NiII atom in the title complex, poly[diazidobis[μ‐1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene‐κ2N4:N4′]nickel(II)], [Ni(N3)2(C12H12N6)2]n, is a distorted octahedron, in which the NiII atom lies on an inversion centre and is coordinated by four N atoms from the triazole rings of two symmetry‐related pairs of 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene (bbtz) ligands and two N atoms from two symmetry‐related monodentate azide ligands. The NiII atoms are bridged by four bbtz ligands to form a two‐dimensional (4,4)‐network.  相似文献   

6.
The structures reported herein, viz. bis(4‐aminonaphthalene‐1‐sulfonato‐κO)bis(4,5‐diazafluoren‐9‐one‐κ2N,N′)copper(II), [Cu(C10H8NO3S)2(C11H6N2O)2], (I), and poly[[[diaquacadmium(II)]‐bis(μ‐4‐aminonaphthalene‐1‐sulfonato)‐κ2O:N2N:O] dihydrate], {[Cd(C10H8NO3S)2(H2O)2]·2H2O}n, (II), are rare examples of sulfonate‐containing complexes where the anion does not fulfill a passive charge‐balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the CuII atom, and the asymmetric unit contains one‐half of a Cu atom, one complete 4‐aminonaphthalene‐1‐sulfonate (ans) ligand and one 4,5‐diazafluoren‐9‐one (DAFO) ligand. The CuII atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one‐dimensional chains and solvent water molecules. Here also the cation (a CdII atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two CdII atoms into one‐dimensional infinite chains along the [010] direction, with each CdII center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant π–π stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two‐ and three‐dimensional networks.  相似文献   

7.
The first 4π‐electron resonance‐stabilized 1,3‐digerma‐2,4‐diphosphacyclobutadiene [LH2Ge2P2] 4 (LH=CH[CHNDipp]2 Dipp=2,6‐iPr2C6H3) with four‐coordinate germanium supported by a β‐diketiminate ligand and two‐coordinate phosphorus atoms has been synthesized from the unprecedented phosphaketenyl‐functionalized N‐heterocyclic germylene [LHGe‐P=C=O] 2 a prepared by salt‐metathesis reaction of sodium phosphaethynolate (P≡C?ONa) with the corresponding chlorogermylene [LHGeCl] 1 a . Under UV/Vis light irradiation at ambient temperature, release of CO from the P=C=O group of 2 a leads to the elusive germanium–phosphorus triply bonded species [LHGe≡P] 3 a , which dimerizes spontaneously to yield black crystals of 4 as isolable product in 67 % yield. Notably, release of CO from the bulkier substituted [LtBuGe‐P=C=O] 2 b (LtBu=CH[C(tBu)N‐Dipp]2) furnishes, under concomitant extrusion of the diimine [Dipp‐NC(tBu)]2, the bis‐N,P‐heterocyclic germylene [DippNC(tBu)C(H)PGe]2 5 .  相似文献   

8.
In the complex (morpholine)[2‐hydroxy‐N′‐(5‐nitro‐2‐oxidobenzylidene)benzohydrazidato]nickel(II), [Ni(C14H9N3O5)(C4H9NO)], (I), the NiII center is in a square‐planar N2O2 coordination geometry. The complex bis[μ‐2‐hydroxy‐N′‐(2‐oxidobenzylidene)benzohydrazidato]bis[(morpholine)zinc(II)], [Zn2(C14H10N2O3)2(C4H9NO)2], (II), consists of a neutral centrosymmetric dimer with a coplanar Zn22‐O)2 core. The two ZnII centers are bridged by phenolate O atoms. Each ZnII center exhibits a distorted square‐pyramidal stereochemistry, in which the four in‐plane donors come from the O,N,O′‐tridentate 2‐hydroxy‐N′‐(2‐oxidobenzylidene)benzohydrazidate(2−) ligand and a symmetry‐related phenolate O atom, and the axial position is coordinated to the N atom from the morpholine molecule. There are intramolecular phenol–hydrazide O—H...N hydrogen bonds present in both (I) and (II). In (I), square‐planar nickel complexes are linked by intermolecular morpholine–morpholine N—H...O hydrogen bonds, leading to a one‐dimensional chain, while in (II) an infinite two‐dimensional network is formed via intermolecular hydrogen bonds between the coordinated morpholine NH groups and the uncoordinated phenolate O atoms.  相似文献   

9.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

10.
In the title complex, [Ni(C21H14Br2N2O2)], the NiII atom is coordinated by the two imine N and two phenolate O atoms of the Schiff base ligand in a tetrahedrally distorted square‐planar geometry. The Ni—N and Ni—O distances are within the ranges expected for Ni–Schiff base derivatives. Intermolecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming (12) (A) and (10) (B) rings. These dimers combine to form a supramolecular ABAB… aggregate which propagates along the [100] direction.  相似文献   

11.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

12.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

13.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

14.
In the title compounds, {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′‐bis­(salicyl­idene)‐2,2‐di­methyl‐1,3‐propane­diaminate (SALPD2?, C17H16N2O22?) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively.  相似文献   

15.
In the crystal structure of the title complex, poly­[[di­azidocobalt(II)]‐di‐μ‐1,4‐bis(1,2,4‐triazol‐1‐yl­methyl)­benzene‐κ4N4:N4′], [Co(N3)2(bbtz)2]n, where bbtz is 1,4‐bis(1,2,4‐triazol‐1‐yl­methyl)­benzene (C12H12N6), the CoII atom, which lies on an inversion centre, is six‐coordinated by four N atoms from four bbtz ligands and by two N atoms from two azide ligands, in a distorted octahedral coordination environment. The CoII atoms are bridged by four bbtz ligands to form a two‐dimensional [4,4]‐network.  相似文献   

16.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

17.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

18.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

19.
The ZnII compounds, μ‐4,4′‐ethylenedibenzoato‐bis[acetatoaqua(dipyrido[3,2‐a:2′,3′‐c]phenazine)zinc(II)] dihydrate, [Zn2(C2H3O2)2(C16H10O4)(C18H10N4)2(H2O)2]·2H2O, (I), and catena‐poly[[[aqua(pyrazino[2,3‐f][1,10]phenanthroline)zinc(II)]‐μ‐4,4′‐ethylenedibenzoato] N,N‐dimethylformamide hemisolvate], {[Zn(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NO}n, (II), display very different structures because of the influence of the N‐donor chelating ligands. In (I), the coordination geometry of each ZnII centre is distorted octahedral, involving two N atoms from one dipyrido[3,2‐a:2′,3′‐c]phenazine (L1) ligand, and four O atoms from one bis‐chelating acetate anion, one bridging 4,4′‐ethylenedibenzoate (bpea) ligand and one water molecule. Adjacent ZnII atoms are bridged by one bpea ligand to form a dinuclear complex, and the dinuclear species is centrosymmetric. Two types of π–π interactions between neighbouring dinuclear species have been found: one is between the L1 ligands, and the second is between the L1 and bpea ligands. In this way, an interesting two‐dimensional supramolecular layer is formed. The layers are further linked by O—H...O and O—H...N hydrogen bonds, generating a three‐dimensional supramolecular network. In (II), each ZnII atom is square‐pyramidally coordinated by two N atoms from one pyrazino[2,3‐f][1,10]phenanthroline ligand, three O atoms from two different bpea ligands and one water molecule. The two bpea dianions are situated across inversion centres. The bpea dianions bridge neighbouring ZnII centres, giving a one‐dimensional chain structure in the ab plane. As in (I), two types of π–π interactions between neighbouring chains complete a three‐dimensional supramolecular structure. The results indicate that the structures of the N‐donor chelating ligands are the dominant factors determining the final supramolecular structures of the two compounds.  相似文献   

20.
[μ‐N,N′‐Bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐<!?show [forcelb]><!?tlsb=0.12pt>1:2κ2N:N′]bis{[N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐κN]diiodidomercury(II)}, [Hg2I4(C18H14N4O2)3], is an S‐shaped dinuclear molecule, composed of two HgI2 units and three N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide (L) ligands. The central L ligand is centrosymmetric and coordinated to two HgII cations via two pyridine N atoms, in a synsyn conformation. The two terminal L ligands are monodentate, with one uncoordinated pyridine N atom, and each adopts a synanti conformation. The HgI2 units show highly distorted tetrahedral (sawhorse) geometry, as the HgII centres lie only 0.34 (2) or 0.32 (2) Å from the planes defined by the I and pyridine N atoms. Supramolecular interactions, thermal stability and solid‐state luminescence properties were also measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号