首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersion reversible addition‐fragmentation chain transfer (RAFT) polymerization of 4‐vinylpyridine in toluene in the presence of the polystyrene dithiobenzoate (PS‐CTA) macro‐RAFT agent with different chain length is discussed. The RAFT polymerization undergoes an initial slow homogeneous polymerization and a subsequent fast heterogeneous one. The RAFT polymerization rate is dependent on the PS‐CTA chain length, and short PS‐CTA generally leads to fast RAFT polymerization. The dispersion RAFT polymerization induces the self‐assembly of the in situ synthesized polystyrene‐b‐poly(4‐vinylpyridine) block copolymer into highly concentrated block copolymer nano‐objects. The PS‐CTA chain length exerts great influence on the particle nucleation and the size and morphology of the block copolymer nano‐objects. It is found, short PS‐CTA leads to fast particle nucleation and tends to produce large‐sized vesicles or large‐compound micelles, and long PS‐CTA leads to formation of small‐sized nanospheres. Comparison between the polymerization‐induced self‐assembly and self‐assembly of block copolymer in the block‐selective solvent is made, and the great difference between the two methods is demonstrated. The present study is anticipated to be useful to reveal the chain extension and the particle growth of block copolymer during the RAFT polymerization under dispersion condition. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

3.
We report the preparation of nanostructured adaptive polymer surfaces by diffusion of an amphihilic block copolymer toward the interface. The surface segregation of a diblock copolymer, polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA), occurred when blended with high molecular weight polystyrene employed as a matrix. On annealing, the polymer surfaces changed both the chemical composition and the hydrophilicity depending on the environment and pH, respectively. By exposure to either water vapor or air, the surface wettability varied between hydrophilic and hydrophobic. In addition, surface enrichment on diblock copolymer by water vapor annealing led to self‐assembly occurring at the interface. Hence, nanostructured domains can be observed by AFM in liquid media. Moreover, the PAA segments placed at the interface respond to pH and can switch from an extended hydrophilic state at basic pH values to a collapsed hydrophobic state in acidic media. Accordingly, the surface morphology changed from swelled micelles to nanometer size holes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2982–2990, 2010  相似文献   

4.
Metal–polymer hybrid films are prepared by deposition of polymer‐coated PtCo nanoparticles onto block copolymer templates. For templating, a thin film of the lamella‐forming diblock copolymer poly(styrene‐b‐methyl methacrylate) P(S‐b‐MMA) is chemically etched and a topographical surface relief with 3 nm height difference is created. Two types of polymer‐grafted PtCo nanoparticles are compared to explore the impact of chemical selectivity versus the topographical effect of the nanotemplate. A preferable wetting of the polystyrene (PS) domains with poly(styrenesulfonate) (PSS)‐coated PtCo nanoparticles (instead of residing in the space between the domains) is observed. Our investigation reveals that the interaction between PSS‐coated nanoparticles and PS domains dominates over the topographical effects of the polymer surface. In contrast, a non‐selective deposition of poly(N‐vinyl‐2‐pyrrolidone) (PVP)‐coated PtCo nanoparticles and the formation of large metal‐particle aggregates on the film is observed.  相似文献   

5.
The UV and V spectral features of an AB diblock copolymer composed of polystyrene and a poly(1,2 & 3,4)isoprene‐based polymer with a pendant liquid crystalline 4‐cyanophenylazobenzene (Az) group in comparison with those of a corresponding LC polyisoprene homopolymer are reported. The orientational and photochromic behavior of an AB diblock copolymer in thin films shows distinct differences from that of a corresponding Az homopolymer. This can be attributed to the influence of the phase separated polymer coil microdomain of polystyrene in the AB block copolymer film.  相似文献   

6.
The preparation of polyolefin‐based stereoregular diblock copolymers by postpolymerization of ethenyl‐capped syndiotactic polypropylene‐based propylene/norbornene copolymer (sPP‐based P‐N copolymer) led to the successful generation of a structurally uniform stereoregular diblock copolymer for self‐assembly studies. The ethenyl‐capped prepolymer was prepared by conducting propylene/norbornene copolymerization in the presence of Me2C(Cp)(Flu)ZrCl2/MAO. Ozonolysis of ethenyl‐capped sPP‐based P‐N copolymer provided the formyl group end‐capped, end‐functionalized prepolymer with a quantitative functional group conversion ratio. Subsequently, connecting the formyl end‐group of the stereoregular prepolymer by coupling with living anionic polystyrene resulted in the high yield production of stereoregular diblock copolymer (sPP‐based P‐N‐block‐polystyrene), which is difficult to prepare by other methods. The resulting stereoregular diblock copolymer possesses precise chemical architecture to self‐organize into consistent nanostructures as evidenced by transmission electron microscopy and small angle X‐ray scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4843–4856, 2008  相似文献   

7.
In this work, the adsorption behavior at the silver/toluene and alumina/toluene interface of polystyrene–polyethylene oxide (PS‐PEO) diblock copolymers of various molecular weights was investigated by implementation of the surface plasmon resonance (SPR) technique. This was accomplished under a careful choice of experimental setup and the use of a suitable physical model for the interpretation of the experimental data. Comparison between polystyrene homopolymer and PS‐PEO diblock copolymer adsorption measurements indicate that PS‐PEO is anchored on the alumina surface via the PEO block, while on silver the copolymer is attached by various chain segments. The measured final adsorption amounts on alumina are typical of end‐attached polymeric brush formation while the dynamics of the adsorption process present two clearly different evolution regimes. This work provides insight into the many advantages of the use of the SPR technique as a valuable tool for similar surface studies. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1580–1591, 2006  相似文献   

8.
Highly porous polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer membranes are prepared using carbohydrates as additives. Therefore α‐cyclodextrine, α‐(D )‐glucose, and saccharose (cane sugar) are tested for the membrane formation of three different PS‐b‐P4VP polymers. The addition of the carbohydrates leads to an increasing viscosity of the membrane solutions due to hydrogen bonding between hydroxyl groups of the carbohydrates and pyridine units of the block copolymer. In all cases, the membranes made from solution with carbohydrates have higher porosity, an improved narrow pore distribution on the surface and a higher water flux as membranes made without carbohydrates with the same polymer, solvent ratio, and polymer concentration.  相似文献   

9.
A set of dendritic‐linear copolymers, poly(maleic anhydride‐grafted‐3,3′‐dimethyl‐(4‐aminophenylazanediyl)bis(2‐methylpropanoate))‐random‐polystyrene (PMA‐APM‐r‐PS), was successfully prepared by copolymerization of the novel dendritic macromonomer, 4‐(4‐(bis(3‐(4‐(bis(3‐methoxy‐2‐methyl‐3‐oxopropyl)amino)phenylamino)‐2‐methyl‐3‐oxopropyl)amino)phenylamino)‐4‐oxobut‐2‐enoic acid (MA‐APM), with styrene monomer. The dendritic MA‐APM macromonomer dendron 3,3′‐dimethyl‐(4‐aminophenylazanediyl)bis(2‐methylpropanoate) (APM) was then grafted by using the divergent growth method. FTIR, 1H NMR, and 13C NMR spectra were used to identify the structures of the dendron, the dendritic macromonomer, and the dendritic‐linear PMA‐APM‐r‐PS copolymer. Furthermore, microporous dendritic‐linear PMA‐APM‐r‐PS copolymer films were prepared by using solvent‐induced phase separation at room temperature. We investigated the phase separation behavior and morphological structures of the dendritic‐linear copolymer film as functions of dendritic GMA‐HPAM segments in the content using SEM. Self‐assembly of the dendritic‐linear PMA‐APM‐r‐PS copolymer in the MG2‐X system, which represented the second generation dendron containing X wt % of the dendritic MA‐APM segment, resulted in submicron phase segregation. Interestingly, the submicron phase segregation morphology of the MG2–43 sample presented a uniform size distribution of ordered‐array structures. The results of this study demonstrate that controlling the appropriate macromonomer content via the grafting of a three‐dimensional structure results in a self‐assembly process that is capable of providing an ordered‐array microporous morphology in a polymer film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3290–3301, 2010  相似文献   

10.
We developed thin films of blends of polystyrene (PS) with the thermoresponsive polymer poly(N‐isopropylacrylamide) (PNIPAM) (PS/PNIPAM) and its diblock copolymer polystyrene‐b‐poly(N‐isopropylacrylamide) (PS/PS‐b‐PNIPAM) in different blend ratios, and we study their surface morphology and thermoresponsive wetting behavior. The blends of PS/PNIPAM and PS/PS‐b‐PNIPAM are spin‐casted on flat silicon surfaces with various drying conditions. The surface morphology of the films depends on the blend ratio and the drying conditions. The PS/PS‐b‐PNIPAM films do not show an increase in their water contact angles with temperature, as it is expected by the presence of the PNIPAM block. All PS/PNIPAM films show an increase in the water contact angle above the lower critical solution temperature of PNIPAM, which depends on the ratio of PNIPAM in the blend and is insensitive to the drying conditions of the films. The difference between the wetting behavior of PS/PS‐b‐PNIPAM and PS/PNIPAM films is due to the arrangement of the PNIPAM chains in the film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 670–679  相似文献   

11.
The sequential layer by layer self‐assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large‐scale highly ordered metal nano­arrays prepared from solvent annealed thin films of polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle–substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self‐assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle–substrate interaction and nanoparticle–polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer.

  相似文献   


12.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

13.
We herein report the tunable self‐assembly of simple block copolymers, namely polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) diblock copolymers, into porous cubosomes with inverse or mesophases of controlled unit cell parameters as well as hexasomes with an inverse hexagonal (p 6mm ) structure, which have been rarely observed in polymer self‐assembly. A new morphological phase diagram was constructed for the solution self‐assembly of PS‐b‐PEO based on the volume fraction of the PS block against the initial copolymer concentration. The formation mechanisms of the cubosomes and hexasomes have also been revealed. This study not only affords a simple system for the controllable preparation and fundamental studies of ordered bicontinuous structures, but also opens up a new avenue towards porous architectures with highly ordered pores.  相似文献   

14.
Immiscible polymer systems are known to form various kinds of phase‐separated structures capable of producing self‐assembled patterns at the surface. In this study, different surface characterization methods were utilized to study the surface morphology and composition produced after annealing thin polymer films. Two different SIMS techniques—static time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) and dynamic nano‐SIMS—were used, complemented by x‐ray photoelectron spectrometry (XPS) and atomic force microscopy (AFM). Thin films (spin‐coated onto silicon wafers) of polystyrene (PS)–poly(methyl methacrylate) (PMMA) symmetric blends and diblock copolymers of similar molecular weight were investigated. Surface enrichment by PS was found on all as‐cast samples. The samples were annealed at 160 °C for different time periods, after which the blend and the copolymer films exhibited opposite behaviour as seen by ToF‐SIMS and XPS. The annealed blend surface presented an increase in the PMMA concentration whereas that of copolymers showed a decrease in PMMA concentration compared with the as‐cast sample. For blends, the nano‐SIMS as well as AFM images revealed the formation of phase‐separated domains at the surface. The composition information obtained from ToF‐SIMS and XPS, as well as the surface mapping by nano‐SIMS and AFM, allowed us to conclude that PS formed phase separated droplet‐like domains on a thin PMMA matrix on annealing. The three‐dimensional nano‐SIMS images showed that the PS droplets were supported inside a rim of PMMA and that these droplets continued from the surface like columnar rods into the film until the substrate interface. In the case of annealed copolymer samples, the AFM images revealed topographical features resembling droplet‐like domains on the surface but there was no phase difference between the domains and the matrix. In the case of copolymers, owing to the covalent bonding between the blocks, complete phase separation was not possible. The three‐dimensional nano‐SIMS images showed domain structures in the form of striations inside the film, which were not continuous until the substrate interface. Information from the different techniques was required to gain an accurate view of the surface composition and topographical changes that have occurred under the annealing conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525  相似文献   

16.
Summary: Pulse field gradient‐NMR (PFG‐NMR) spectroscopy is determined to be a more suitable method for the investigation of self‐association processes in multi‐component (co)polymer systems than light scattering methods. Here the co‐micellization of mixtures of the diblock copolymer polystyrene‐block‐(hydrogenated polyisoprene) (PS‐HPI) and the triblock copolymer polystyrene‐block‐(hydrogenated polybutadiene)‐block‐polystyrene (PS‐HPB‐PS) in decane is investigated by PFG‐NMR spectroscopy and the results compared to those experimentally determined by static (SLS) and dynamic (DLS) light scattering. As expected, diffusion coefficients determined by PFG‐NMR spectroscopy are systematically lower than those from DLS. The PFG‐NMR measurements provided higher values of cequation/tex2gif-stack-1.gif(X)/ctot than the model calculations, illustrating that the basic assumption used in the calculations, i.e., that the number concentration of co‐micelles in mixed solutions follows the dilution with a triblock copolymer solution, 1 − X, is not fully valid at high X (weight fraction of PS‐HPB) values.

Comparison of PFG‐NMR spectroscopy and SLS (cequation/tex2gif-stack-2.gif/ctot = equilibrium concentration of free PS‐HPB‐PS over the total concentration of copolymers in solution, X = weight fraction of PS‐HPB).  相似文献   


17.
Catalyst formation kinetics of a ferrocene‐containing homopolymer, polyferrocenylethylmethylsilane (PFEMS), is investigated as it relates to the catalysis of single walled carbon nanotubes (SWNTs) through a chemical vapor deposition (CVD) process. The formation and efficiency of the PFEMS‐based iron catalyst is compared with that of the corresponding polystyrene (PS)‐b‐PFEMS diblock copolymer. The PFEMS homopolymer contains 23 wt % iron, while PS‐b‐PFEMS, with a 25 vol % PFEMS content, is only 6% iron. Despite its lower iron content, spin‐cast PS‐b‐PFEMS films on SiO2/Si substrates produce more active iron sites than spin‐cast PFEMS films during CVD growth of SWNTs. This is related to the self‐assembly of the block copolymer, where PFEMS domains are well dispersed in the PS matrix, which degrades at a CVD temperature of 920 °C to leave catalytically active elemental iron behind. On the contrary, the pure PFEMS films contain a high percentage of iron and silicon, which tend to transform into ceramic‐coated iron at this high temperature, thus rendering the iron inactive towards SWNT growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 758–765, 2007  相似文献   

18.
A simple route to organic–inorganic (O/I) nano‐objects with different morphologies through polymerization‐induced block copolymer self‐assembly is described. The synthetic strategy relies on the chain‐extension of polyhedral oligomeric silsesquioxanes (POSS)‐containing macro‐CTA (PMAiBuPOSS13 and PMAiBuPOSS19) with styrene at 120 °C in octane, a selective solvent of the POSS‐containing block. The polymerization system was proven to afford a plethora of O/I nano‐objects, such as spherical micelles, cylindrical micelles, and vesicles depending on the respective molar masses of the PMAiBuPOSS and polystyrene (PS) blocks. The cooling procedure was also proven to be a crucial step to generate particles with a unique morphology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4558–4564  相似文献   

19.
Using atom transfer radical polymerization (ATRP) and macromolecular azo coupling reaction, both o‐nitrobenzyl (ONB) group and azobenzene group were efficiently incorporated into the center of the amphiphilic diblock copolymer chain. The prepared diblock copolymer was well characterized by UV–vis, 1H NMR, and GPC methods. Self‐assembly of the amphiphilic copolymer in selected solvents can result in uniform self‐assembly aggregates. In the presence of external stimuli [upconversion nanoparticles (UCNPs)/NIR light or enzyme], the amphiphilic diblock copolymer chain could be broken by the cleavage of ONB or azobenzene group, which would lead to the disruption of the self‐assembly aggregates. This photo‐ and enzyme‐triggered disruption process was proved by using transmission electron microscopy (TEM) and GPC method. Fluorescence emission spectra measurements indicated that the release of Nile red, a hydrophobic dye, encapsulated by the self‐assembly aggregates, could be successfully realized under the NIR light and enzyme stimuli. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2450–2457  相似文献   

20.
We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol?1 are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non‐polar solvents or in the bulk. Hierarchical self‐assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well‐ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号