首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, the use of enantiomerically pure counteranions for the induction of asymmetry in reactions proceeding through cationic intermediates has emerged as an exciting new concept, which has been termed asymmetric counteranion‐directed catalysis (ACDC). Despite its success, the concept has not been fully defined and systematically discussed to date. This Review closes this gap by providing a clear definition of ACDC and by examining both clear cases as well as more ambiguous examples to illustrate the differences and overlaps with other catalysis concepts.  相似文献   

2.
3.
4.
5.
6.
The utilization of hydrogen bonding as an activation force has become a powerful tool in asymmetric organocatalysis. Significant advances have been made in the recent past in this emerging field. Due to space constraints, this Focus Review summarizes only the key aspects with an emphasis on catalysis based on chiral ureas and thioureas, diols, and phosphoric acids. The examples provided neatly demonstrate that chiral ureas and thioureas, diols, and phosphoric acids display effective and unique activation modes of catalysis for a broad spectrum of asymmetric organic transformations, including single‐step and multiple‐step cascade reactions. These functionalities, which have the ability to afford efficient H‐bond activation of electrophiles including C?O, C?N, aziridines, and epoxides, have established their status as “privileged” functional groups in the design of organocatalysts.  相似文献   

7.
A stereoselective one‐pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia‐ene reaction has been developed. Depending on the nitroalkene, the 5‐exo‐dig‐cyclization could be achieved by silver‐catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments.  相似文献   

8.
Time for SOme MOre : For the first time SOMO (singly occupied molecular orbital) activation has been exploited to allow a new approach to the α‐chlorination of aldehydes. This transformation can be readily implemented as part of a linchpin catalysis approach to the enantioselective production of terminal epoxides.

  相似文献   


9.
The combination of a new bifunctional phosphine and an acrylate generate a zwitterion in situ and it serves as an efficient catalyst for asymmetric reactions through a homogeneous ion‐pairing mode. This new catalytic system has been successfully applied to Mannich‐type reactions to give excellent results and it demonstrates a broad substrate scope. Such reactivity is not accessible with general organophosphine catalytic modes. Preliminary investigations into the mechanism are also presented.  相似文献   

10.
Phase Transfer Catalysis (PTC) is a powerful tool to perform reactions in a practical fashion, both in laboratory and industrial scale. Significant cost savings and major process improvements can be achieved in reactions performed under PTC conditions. In the last few years remarkable results in stereoselective reactions were achieved using chiral, non-racemic quaternary ammonium salts. Moreover, the use of bulky, chiral phosphate anions paired with achiral cations to generate lipophilic ion pairs allowed to design new avenues for the stereoselective construction of important building blocks. Hydrogen bond interactions were also shown to provide new pathways for asymmetric nucleophilic substitutions using insoluble reagents under PTC conditions. This Review will focus on recent advances in developing practical synthetic routes to construct molecules in a stereoselective fashion under PTC conditions.  相似文献   

11.
12.
13.
Asymmetric aminocatalysis exploits the potential of chiral primary and secondary amines to catalyze asymmetric reactions. It has greatly simplified the functionalization of carbonyl compounds while ensuring high enantioselectivity. Recent advances in cinchona‐based primary amine catalysis have provided new synthetic opportunities and conceptual perspectives for successfully attacking major challenges in carbonyl compound chemistry, which traditional approaches have not been able to address. This Review outlines the historical context for the development of this catalyst class while charting the landmark discoveries and applications that have further expanded the synthetic potential of aminocatalysis.  相似文献   

14.
《中国化学》2018,36(10):925-928
An asymmetric fluorinative dearomatization reaction of tryptophol derivatives was developed via chiral anion phase‐transfer catalysis. Various fluorinated furoindolines were obtained in moderate to excellent yields and enantioselectivity in the presence of Selectfluor. The preliminary mechanistic studies suggested the existence of an in situ formed tryptophol boronic ester plays a critical role in determining the enantioselectivity. This method features the facile introduction of a fluorine atom in a highly enantioselective manner and construction of two contiguous quaternary stereogenic centers.  相似文献   

15.
Catalysis by chiral weakly-coordinating anions (WCAs) remains underdeveloped due to the lack of a molecular design strategy for exploiting their characteristics, such as the non-nucleophilic nature. Here, we report the development of a chiral borate ion comprising an O,N,N,O-tetradentate backbone, which ensures hitherto unattainable structural robustness. Upon pairing with a proton, the hydrogen borate acts as an effective catalyst for the asymmetric Prins-type cyclization of vinyl ethers, providing access to structurally and stereochemically defined dihydropyrans. The key to selectivity control is the distinct ability of the borate ion to discriminate the prochiral faces of the acyclic oxonium ion intermediate and dictate the regiochemical outcome. We anticipate that this study paves the way for exploring the untapped potential of WCA catalysis for selective chemical synthesis.  相似文献   

16.
The efficient construction of nitrogen‐containing organic compounds is a major challenge in chemical synthesis. Imines are one of the most important classes of electrophiles for this transformation. However, both the available imines and applicable nucleophiles for them are quite limited given the existing preparative methods. Described herein are imine precursors which generate reactive imines with a wide variety of substituents under mild basic conditions. This approach enables the construction of various nitrogen‐containing molecules which cannot be accessed by the traditional approach. The utility of the novel imine precursor was demonstrated in the asymmetric Mannich‐type reaction under phase‐transfer conditions.  相似文献   

17.
18.
19.
Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion‐pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号