首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contrary to the classical silylene dimerization leading to a disilene structure, phosphine stabilized hydro‐ and chloro‐silylenes ( 2 a , b ) undergo an unique dimerization via silylene insertion into Si? X σ‐bonds (X=H, Cl), which is reversible at room temperature. DFT calculations indicate that the insertion reaction proceeds in one step in a concerted manner.  相似文献   

2.
A donor‐stabilized 1,3‐disila‐2,4‐diazacyclobutadiene presents an exceptionally short nonbonded Si???Si distance (2.23 Å), which is as short as that of Si=Si bonds (2.15–2.23 Å). Theoretical investigations indicate that there is no bond between the two silicon atoms, and that the unusual geometry can be related to a significant coulomb repulsion between the two ring nitrogen atoms. This chemical pressure phenomenon could provide an alternative and superior way of squeezing out van der Waals space in highly strained structures, as compared to the classical physical methods.  相似文献   

3.
A palladium‐catalyzed carbene insertion into C(sp3)?H bonds leading to pyrrolidines was developed. The coupling reaction can be catalyzed by both Pd0 and PdII, is regioselective, and shows a broad functional group tolerance. This reaction is the first example of palladium‐catalyzed C(sp3)?C(sp3) bond assembly starting from diazocarbonyl compounds. DFT calculations revealed that this direct C(sp3)?H bond functionalization reaction involves an unprecedented concerted metalation–deprotonation step.  相似文献   

4.
5.
6.
The similar shape and electronic structure of the radical anions of 1,2,4,5‐tetracyanopyrazine (TCNP) and 1,2,4,5‐tetracyanobenzene (TCNB) suggest a similar relative orientation for their long, multicenter carbon?carbon bond in π‐[TCNP]22? and in π‐[TCNB]22?, in good accord with the Maximin Principle predictions. Instead, the two known structures of π‐[TCNP]22? have a D2h(θ=0°) and a C2(θ=30°) orientation (θ being the dihedral angle that determines the rotation of one radical anion relative to the other along the axis that passes through center of the two six‐membered rings). The only known π‐[TCNB]22? structure has a C2(θ=60°) orientation. The origin of these preferences was investigated for both dimers by computing (at the RASPT2/RASSCF(30,28) level) the variation with θ of the interaction energy (Eint) and the variation of the Eint components. It was found that: 1) a long, multicenter bond exists for all orientations; 2) the Eint(θ) angular dependence is similar in both dimers; 3) for all orientations the electrostatic component dominates the value of Eint(θ), although the dispersion and bonding components also play a relevant role; and 4) the Maximin Principle curve reproduces well the shape of the Eint(θ) curve for isolated dimers, although none of them reproduce the experimental preferences. Only after the (radical anion).? ??? cation+ interactions are also included in the model aggregate are the experimental data reproduced computationally.  相似文献   

7.
The anionic gold(I) complexes [1‐(Ph3PAu)‐closo‐1‐CB11H11]? ( 1 ), [1‐(Ph3PAu)‐closo‐1‐CB9H9]? ( 2 ), and [2‐(Ph3PAu)‐closo‐2‐CB9H9]? ( 3 ) with gold–carbon 2c–2e σ bonds have been prepared from [AuCl(PPh3)] and the respective carba‐closo‐borate dianion. The anions have been isolated as their Cs+ salts and the corresponding [Et4N]+ salts were obtained by salt metathesis reactions. The salt Cs‐ 3 isomerizes in the solid state and in solution at elevated temperatures to Cs‐ 2 with ΔHiso=(?75±5) kJ mol?1 (solid state) and ΔH=(118±10) kJ mol?1 (solution). The compounds were characterized by vibrational and multi‐NMR spectroscopies, mass spectrometry, elemental analysis, and differential scanning calorimetry. The crystal structures of [Et4N]‐ 1 , [Et4N]‐ 2 , and [Et4N]‐ 3 were determined. The bonding parameters, NMR chemical shifts, and the isomerization enthalpy of Cs‐ 3 to Cs‐ 2 are compared to theoretical data.  相似文献   

8.
Conjugate additions of organocuprates are of outstanding importance for organic synthesis. To improve our mechanistic understanding of these reactions, we have used electrospray ionization mass spectrometry for the identification of the ionic intermediates formed upon the treatment of LiCuR2 ? LiCN (R=Me, Bu, Ph) with a series of α,β‐unsaturated nitriles. Acrylonitrile, the weakest Michael acceptor included, did not afford any detectable intermediates. Fumaronitrile (FN) yielded adducts of the type Lin?1CunR2n(FN)n?, n=1–3. When subjected to fragmentation in the gas phase, these adducts were not converted into the conjugate addition products, but re‐dissociated into the reactants. In contrast, the reaction with 1,1‐dicyanoethylene furnished the products of the conjugate addition without any observable intermediates. Tri‐ and tetracyanoethylene proved to be quite reactive as well. The presence of several cyano groups in these substrates opened up reaction pathways different from simple conjugate additions, however, and led to dimerization and substitution reactions. Moreover, the gas‐phase fragmentation behavior of the species formed from these substrates indicated the occurrence of single‐electron transfer processes. Additional quantum‐chemical calculations provided insight into the structures and stabilities of the observed intermediates and their consecutive reactions.  相似文献   

9.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

10.
11.
12.
The precise role of non‐conventional hydrogen bonds such as the C?H???O interaction in influencing the conformation of small molecules remains unresolved. Here we survey a series of β‐turn mimetics using X‐ray crystallography and NMR spectroscopy in conjunction with quantum calculation, and conclude that favourable torsional and electronic effects are important for the population of states with conformationally influential C?H???O interactions. Our results also highlight the challenge in attempting to deconvolute a myriad of interdependent noncovalent interactions in order to focus on the contribution of a single one. Within a small molecule that is designed to resemble the complexity of the environment within peptides and proteins, the interplay of different steric burdens, hydrogen‐acceptor/‐donor properties and rotational profiles illustrate why unambiguous conclusions based solely on NMR chemical shift data are extremely challenging to rationalize.  相似文献   

13.
14.
15.
A ring carbo‐mer of naphthalene, C32Ar8 (Ar=pn‐pentylphenyl), has been obtained as a stable blue chromophore, after a 19‐step synthetic route involving methods inspired from those used in the synthesis of carbo‐benzenes, or specifically devised for the present target, like a double Sonogashira‐type coupling reaction. The last step is a SnCl2/HCl‐mediated reduction of a decaoxy‐carbo‐decalin, which is prepared through successive [8+10] macrocyclization steps. Two carbo‐benzene references are also described, C18Ar6 and o‐C18Ar4(C≡C‐SiiPr3)2. The carbo‐naphthalene bicycle is locally aromatic according to structural and magnetic criteria, as revealed by strong diatropic ring current effects on the deshielding of 1H nuclei of the Ar groups and on the negative value of the DFT‐calculated NICS at the center of the C18 rings (?12.8 ppm). The stability and aromaticity of this smallest fused molecular fragment of α‐graphyne allows prediction of the same properties for the carbon allotrope itself.  相似文献   

16.
For well over 20 years, μ‐oxo‐diiron corroles, first reported by Vogel and co‐workers in the form of μ‐oxo‐bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s?1, ΔEQ 2.35 mm s?1), have been thought of as comprising a pair antiferromagnetically coupled low‐spin FeIV centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)‐oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not FeIV but intermediate‐spin FeIII coupled to a corrole.2?. The intramolecular spin couplings in {Fe[TPC]}2(μ‐O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg–Dirac–van Vleck spin Hamiltonian H=JFe–corrole(SFe?Scorrole)+JFe–Fe′(SFe?SFe′)+JFe′–corrole(SFe′?Scorrole′), which yielded JFe–corrole=JFe′–corrole′=0.355 eV (2860 cm?1) and JFe–Fe′=0.068 eV (548 cm?1). The unexpected stability of μ‐oxo‐diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence.  相似文献   

17.
By utilizing stable carbenes with low‐lying LUMOs, coupling with the stable nucleophilic diaminocyclopropenylidene was achieved. This reaction resulted in the formation of two new and rare examples of a bent allene as well as the isolation of the first carbene–carbene heterodimer.  相似文献   

18.
The synthesis and characterization of a singlet delocalized 2,4‐diimino‐1,3‐disilacyclobutanediyl, [LSi(μ‐CNAr)2SiL] ( 2 , L: PhC(NtBu)2, Ar: 2,6‐iPr2C6H3), and a silylenylsilaimine, [LSi(?NAr)? SiL] ( 3 ), are described. The reaction of three equivalents of the disilylene [LSi? SiL] ( 1 ) with two equivalents of ArN?C?NAr in toluene at room temperature for 12 h afforded [LSi(μ‐CNAr)2SiL] ( 2 ) and [LSi(?NAr)? SiL] ( 3 ) in a ratio of 1:2. Compounds 2 and 3 have been characterized by NMR spectroscopy and X‐ray crystallography. Compound 2 was also investigated by theoretical studies. The results show that compound 2 possesses singlet biradicaloid character with an extensive electronic delocalization throughout the Si2C2 four‐membered ring and exocyclic C?N bonds. Compound 3 is the first example of a silylenylsilaimine, which contains a low‐valent silicon center and a silaimine substituent. A mechanism for the formation of 2 and 3 is also proposed.  相似文献   

19.
The reaction of dinuclear copper(II ) cryptates with calcium cyanamide, CaNCN, and sodium dicyanamide, Na[N(CN)2] results in dinuclear compounds of formulae [Cu2(HNCN)(R3Bm)](ClO4)3 ( 1 ), [Cu2(dca)(R3Bm)](ClO4)3?4H2O ( 2 ), and [Cu2(NCNCONH2)(R3Bm)](CF3SO3)3 ( 3 ), in which R3Bm=N[(CH2)2NHCH2(C6H4m)CH2NH(CH2)2]3N and dca=dicyanamido ligand (NCNCN?). The X‐ray diffraction analysis reveals for both 1 and 3 a dinuclear entity in which the copper atoms are bridged by means of the ‐NCN‐ unit. The molar magnetic susceptibility measurements of 1–3 in the 2–300 K range indicate ferromagnetic coupling. The calculated J values, by using theoretical methods based on density functional theory (DFT) are in excellent agreement with the experimental data. Catalytic hydration of a nitrile to an amide functional group is assumed responsible for the formation of 3 from a μ1,3‐dicyanamido ligand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号