首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed I2‐ or N‐iodosuccinimide (NIS)‐mediated amidiniumation of N‐alkenyl formamidines for the syntheses of cyclic formamidinium salts, some of which could be directly used as N‐heterocyclic carbene (NHC) precursors. Treatment of iodine‐containing formamidinium salts with Al2O3 led to the formation of cyclic formamidinium salts with an unsaturated backbone. A rhodium(I) complex ligated by a representative NHC was prepared by the reaction of [Rh(cod)Cl]2 (cod=1,5‐cyclooctadiene) with the free carbene obtained in situ from deprotonation of the corresponding formamidinium salts. The NHCs prepared in situ can also react with S8 to afford the corresponding thiones.  相似文献   

2.
[(NHC)(cymene)RuCl2] (NHC=N-heterocyclic carbene) complexes instigate a light-driven gem-hydrogenation of internal alkynes with concomitant formation of discrete Grubbs-type ruthenium carbene species. This unorthodox reactivity mode is harnessed in the form of a “hydrogenative metathesis” reaction, which converts an enyne substrate into a cyclic alkene. The intervention of ruthenium carbenes formed in the actual gem-hydrogenation step was proven by the isolation and crystallographic characterization of a rather unusual representative of this series carrying an unconfined alkyl group on a disubstituted carbene center.  相似文献   

3.
A 1‐phosphonium‐8‐borane‐decorated naphthalene molecule 2 has been found to react with N,N′‐dimethylimidazol‐2‐ylidene (IMe), a popular member of the N‐heterocyclic carbene (NHC) family, which converts it into two vinyl‐amine fragments one of which is trapped between the phosphonium and borane unit by the formation of a C?C and a B?N bond. The same reactivity was not observed for larger NHC molecules. Control experiments and mechanistic studies have established the involvement of an ylide–borane molecule and an imidazolium salt in addition to IMe carbene in this new transformation of an NHC.  相似文献   

4.
A series of N ‐heterocyclic carbene (NHC)/Ag systems were developed for the carboxylative assembly of propargylic alcohols and carbon dioxide (CO2). With the catalysis of these catalytic systems, a variety of target α‐alkylidene cyclic carbonates could be obtained smoothly under atmospheric CO2 pressure in straightforward one‐pot processes. Particularly, these reactions could be performed without any stoichiometric addition of bases or additives. Further mechanistic investigation reveals that the excellent activities are attributed to the effective activations of CO2 accomplished by the NHCs via the formation of the NHC‐CO2 adducts.  相似文献   

5.
We have developed a CuII‐, AgI‐, and NaOTf‐mediated intramolecular quaternization by arylation reactions to synthesize a variety of N‐heterocyclic carbene (NHC) precursors with a benzene‐fused backbone. The methodology also provides a convenient alternative route for the synthesis of 6‐H‐phenanthridine derivatives. A novel silver–NHC complex was prepared by treatment of Ag2O with the free carbene, which was in situ prepared from the deprotonation of a representative quinazolinonium salt.  相似文献   

6.
The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported.  相似文献   

7.
The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported.  相似文献   

8.
The gas‐phase bond‐dissociation energies of a SO2–imidazolylidene leaving group of three gold(I) benzyl imidazolium sulfone complexes are reported (E0=46.6±1.7, 49.6±1.7, and 48.9±2.1 kcal mol?1). Although these energies are similar to each other, they are reproducibly distinguishable. The energy‐resolved collision‐induced dissociation experiments of the three [L]–gold(I) (L=ligand) carbene precursor complexes were performed by using a modified tandem mass spectrometer. The measurements quantitatively describe the structural and electronic effects a p‐methoxy substituent on the benzyl fragment, and trans [NHC] and [P] gold ligands, have towards gold carbene formation. Evidence for the formation of the electrophilic gold carbene in solution was obtained through the stoichiometric and catalytic cyclopropanation of olefins under thermal conditions. The observed cyclopropane yields are dependent on the rate of gold carbene formation, which in turn is influenced by the ligand and substituent. The donation of electron density to the carbene carbon by the p‐methoxy benzyl substituent and [NHC] ligand stabilizes the gold carbene intermediate and lowers the dissociation barrier. Through the careful comparison of gas‐phase and solution chemistry, the results suggest that even gas‐phase leaving‐group bond‐dissociation energy differences of 2–3 kcal mol?1 enormously affect the rate of gold carbene formation in solution, especially when there are competing reactions. The thermal decay of the gold carbene precursor complex was observed to follow first‐order kinetics, whereas cyclopropanation was found to follow pseudo‐first‐order kinetics. Density‐functional‐theory calculations at the M06‐L and BP86‐D3 levels of theory were used to confirm the observed gas‐phase reactivity and model the measured bond‐dissociation energies.  相似文献   

9.
N‐Heterocyclic carbene (NHC)‐ and cyclic (alkyl)(amino)carbene (CAAC)‐stabilized borafluorene radicals have been isolated and characterized by elemental analysis, single‐crystal X‐ray diffraction, UV/Vis absorption, cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and theoretical studies. Both the CAAC–borafluorene radical ( 2 ) and the NHC–borafluorene radical ( 4 ) have a considerable amount of spin density localized on the boron atoms (0.322 for 2 and 0.369 for 4 ). In compound 2 , the unpaired electron is also partly delocalized over the CAAC ligand carbeneC and N atoms. However, the unpaired electron in compound 4 mainly resides throughout the borafluorene π‐system, with significantly less delocalization over the NHC ligand. These results highlight the Lewis base dependent electrostructural tuning of materials‐relevant radicals. Notably, this is the first report of crystalline borafluorene radicals, and these species exhibit remarkable solid‐state and solution stability.  相似文献   

10.
A series of new benzimidazolium salts as N‐heterocyclic carbene (NHC) precursors has been synthesized. Reactions of these salts with Ag2O with varying metal‐to‐salt ratio facilitate the formation of a series of new binuclear and mononuclear Ag(I)–NHC complexes. All compounds were characterized using physicochemical and spectroscopic techniques. Single‐crystal X‐ray diffraction study reveals a binuclear structure for one of the complexes and a mononuclear one for two others. These complexes exist as cationic Ag(I)–NHC complexes with the chelation of carbene carbons to the silver centre in an almost linear manner. The compounds were screened for their anti‐bacterial activities against Staphylococcus aureus (ATCC 12600) as a Gram‐positive bacterium and Escherichia coli (ATCC 25922) as a Gram‐negative bacterium. The results show that both bacteria appear markedly inhibited. Furthermore, the results suggest the possibility of steric variation as a modulation of the anti‐bacterial activities. The nuclease activities of the compounds were assessed using gel electrophoresis and the results indicate that these complexes can cleave or degrade DNA and RNA via a non‐oxidative mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Arynes were generated in situ from ortho‐silyl aryl triflates and fluoride ions in the presence of stable N‐heterocyclic carbene boranes (NHC? BH3). Spontaneous hydroboration ensued to provide stable B‐aryl‐substituted NHC‐boranes (NHC? BH2Ar). The reaction shows good scope in terms of both the NHC‐borane and aryne components and provides direct access to mono‐ and disubstituted NHC‐boranes. The formation of unusual ortho regioisomers in the hydroboration of arynes with an electron‐withdrawing group supports a hydroboration process with hydride‐transfer character.  相似文献   

12.
Radical borylation using N‐heterocyclic carbene (NHC)‐BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo‐ and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC‐boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC‐boryl radicals enabled by photoredox catalysis. NHC‐boryl radicals are generated via a single‐electron oxidation and subsequently undergo cross‐coupling with the in‐situ‐generated radical anions to yield gem‐difluoroallylboronates. A photoredox‐catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC‐boryl radicals through a single‐electron‐transfer pathway.  相似文献   

13.
The synthesis, characterisation and biological activity of water‐soluble Ag(I)‐NHC complexes, general formula Na[(NHC)AgCl] where NHC is a sulfonated and sterically hindered N‐heterocyclic carbene, is reported. The Ag‐NHC complexes (2a–e) were synthesised by reacting the corresponding sulfonated NHC ligands with Ag2O in the presence of NaCl or NaBr in methanol/water (1:1) solution. Synthesised silver (I)‐N‐heterocyclic carbene complexes have been characterised by NMR, micro‐analysis and HRMS spectroscopic methods. The IC50 values of these complexes were determined by a proliferation BrdU enzyme‐linked immunosorbent assay (ELISA) against HeLa (human cervix carcinoma), HT29 (human adenocarcinoma) and L929 (mouse fibroblast) cell lines. These complexes have been highlighted as promising and original platforms for building new types of metalodrug. All new water‐soluble Ag(I) complexes demonstrated remarkable cytotoxic activity against HeLa, HT29 and L929 cell lines.  相似文献   

14.
The remarkable resilience of N‐heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces. Despite rapid progress using deposition from free or CO2‐protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups, such as alcohols and amines, particularly on larger nanoparticles. Here, we synthesize NHC‐functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents, enabling otherwise difficult functional groups to be appended to the carbene. The resilience of the NHC?Au bond allows for multi‐step post‐synthetic modification. Beginning with the nitro‐NHC, we form an amine‐NHC terminated surface, which further undergoes amide coupling with carboxylic acids. The simplicity of this approach, its compatibility with aqueous nanoparticle solutions, and its ability to yield protic functionality, greatly expands the potential of NHC‐functionalized noble metal surfaces.  相似文献   

15.
The reported metal–organic framework (MOF) catalyst realizes CO2 to methanol transformation under ambient conditions. The MOF is one rare example containing metal‐free N‐heterocyclic carbene (NHC) moieties, which are installed using an in situ generation strategy involving the incorporation of an imidazolium bromide based linker into the MOF by postsynthetic ligand exchange. Importantly, the resultant NHC‐functionalized MOF is the first catalyst capable of performing quantitative hydrogen transfer from silanes to CO2, thus achieving quantitative (>99 %) methanol yield. Density‐functional theory calculations indicate the high catalytic activity of the NHC sites in MOFs are attributed to the decreased reaction barrier of a reaction route involving the formation of an NHC‐silane adduct. In addition, the MOF‐immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product.  相似文献   

16.
Ferroelasticity has been reported for several types of molecular crystals, which show mechanical‐stress‐induced shape change under twinning and/or spontaneous formation of strain. Aiming to create materials that exhibit both ferroelasticity and light‐emission characteristics, we discovered the first examples of ferroelastic luminescent organometallic crystals. Crystals of arylgold(I)(N‐heterocyclic carbene)(NHC) complexes bend upon exposure to anisotropic mechanical stress. X‐ray diffraction analyses and stress‐strain measurements on these ferroelastic crystals confirmed typical ferroelastic behavior, mechanical twinning, and the spontaneous build‐up of strain. A comparison with single‐crystal structures of related gold‐NHC complexes that do not show ferroelasticity shed light on the structural origins of the ferroelastic behavior.  相似文献   

17.
The role of CH–π and CF–π interactions in determining the structure of N‐heterocyclic carbene (NHC) palladium complexes were studied using 1H NMR spectroscopy, X‐ray crystallography, and DFT calculations. The CH–π interactions led to the formation of the cisanti isomers in 1‐aryl‐3‐isopropylimidazol‐2‐ylidene‐based [(NHC)2PdX2] complexes, while CF–π interactions led to the exclusive formation of the cis‐syn isomer of diiodobis(3‐isopropyl‐1‐pentafluorophenylimidazol‐2‐ylidene) palladium(II).  相似文献   

18.
The combined use of aminocarbene and divinyltetramethyldisiloxane (dvtms) as supporting ligands enables the access of unprecedented low‐coordinate iron(0) alkene compounds [LnFe(η22‐dvtms)] (L=N‐heterocyclic carbene (NHC) or cyclic (alkyl)(amino)carbene (CAAC), n=1 or 2) from the reactions of FeCl2 with alkali‐metal reducing agents, free aminocarbene ligands, and dvtms. The iron(0) species deliver their {LnFe0} fragments to perform redox reactions with Ph2SiH2, S8, Se, and DippN3, furnishing novel aminocarbene‐supported iron(IV) silylene, all‐ferrous iron–sulfur/selenium cubanes, and bis(imido)iron(IV) compounds. These conversions demonstrate the potential synthetic utility of the carbene‐supported iron(0) complexes as a valuable class of low‐coordinate iron(0) reagents.  相似文献   

19.
Novel acyclic Pd(II)‐N‐heterocyclic carbene (NHC) metallacrown ethers 5a , 5b have been synthesized. Reaction of the imidazolium salts bearing a long polyether chain with Ag2O afforded Ag‐NHC complexes, which then reacted as carbene transfer agent with PdCl2(MeCN)2 to give the desired acyclic Pd(II)‐NHC metallacrown ether complexes 5a and 5b . The 1H NMR and 13C NMR spectra show 5a and 5b exist as mixtures of cis and trans isomers in solution. The trans isomer of 5a was characterized by X‐ray diffraction, which clearly demonstrated two pseudo‐crown ether cavities in trans‐ 5a . Pd(II)‐NHC complexes 5a and 5b have been shown to be highly effective in the Suzuki‐Miyaura reactions of a variety of aryl bromides in neat water without the need of inert gas protection.  相似文献   

20.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号