首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conformationally restricted monofluorinated α‐amino acid, (3‐fluorobicyclo[1.1.1]pentyl)glycine (F‐Bpg), was designed as a label for the structural analysis of membrane‐bound peptides by solid‐state 19F NMR spectroscopy. The compound was synthesized and validated as a 19F label for replacing natural aliphatic α‐amino acids. Calculations suggested that F‐Bpg is similar to Leu/Ile in terms of size and lipophilicity. The 19F NMR label was incorporated into the membrane‐active antimicrobial peptide PGLa and provided information on the structure of the peptide in a lipid bilayer.  相似文献   

2.
Conformationally constrained non‐racemizing trifluoromethyl‐substituted lysine isosteres [(E)‐ and (Z)‐TCBLys] with charged side chains are presented as a new type of 19F‐NMR labels for peptide studies. Design of the labels, their synthesis, incorporation into peptides and experimental demonstration of their application for solid state NMR studies of membrane‐active peptides are described. A series of fluorine‐labeled analogues of the helical amphipathic antimicrobial peptide PGLa(Nle) was obtained, in which different lysine residues in the original peptide sequence were replaced, one at a time, by either (E)‐ or (Z)‐TCBLys. Antimicrobial activities of the synthesized analogues were practically the same as those of the parent peptide. The structural and orientational parameters of the helical PGLa(Nle) peptide in model bilayers, as determined using the novel labels confirmed and refined the previously known structure. (E)‐ and (Z)‐TCBLys, as a set of cationic 19F‐NMR labels, were shown to deliver structural information about the charged face of amphipathic peptides by solid state 19F‐NMR, previously inaccessible by this method.  相似文献   

3.
In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.  相似文献   

4.
α‐Fluorinated β‐amino thioesters were obtained in high yields and stereoselectivities by organocatalyzed addition reactions of α‐fluorinated monothiomalonates (F‐MTMs) to N‐Cbz‐ and N‐Boc‐protected imines. The transformation requires catalyst loadings of only 1 mol % and proceeds under mild reaction conditions. The obtained addition products were readily used for coupling‐reagent‐free peptide synthesis in solution and on solid phase. The α‐fluoro‐β‐(carb)amido moiety showed distinct conformational preferences, as determined by crystal structure and NMR spectroscopic analysis.  相似文献   

5.
β‐Amino acid incorporation has emerged as a promising approach to enhance the stability of parent peptides and to improve their biological activity. Owing to the lack of reliable access to β2,2‐amino acids in a setting suitable for peptide synthesis, most contemporary research efforts focus on the use of β3‐ and certain β2,3‐amino acids. Herein, we report the catalytic asymmetric synthesis of β2,2‐amino acids and their incorporation into peptides by Fmoc‐based solid‐phase peptide synthesis (Fmoc‐SPPS). A quaternary carbon center was constructed by the palladium‐catalyzed decarboxylative allylation of 4‐substituted isoxazolidin‐5‐ones. The N?O bond in the products not only acts as a traceless protecting group for β‐amino acids but also undergoes amide formation with α‐ketoacids derived from Fmoc‐protected α‐amino acids, thus providing expeditious access to α‐β2,2‐dipeptides ready for Fmoc‐SPPS.  相似文献   

6.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

7.
Proteorhodopsin (PR) is a light‐driven proton pump found in near‐surface marine γ‐proteobacteria. The green absorbing variant has three cysteines at positions 107, 156 and 175. We probed the accessibility of these residues by 19F‐MAS NMR. For this purpose, an efficient but simple protocol for chemical fluorine labeling of accessible cysteines in membrane proteins was established. This one‐step reaction was applied to detergent‐solubilized PR before reconstitution into phospholipids. All three cysteines could be labeled and showed distinct 19F chemical shifts with different integral intensities. The accessibility of these cysteines is discussed in the context of a homology model. With the chemical cysteine labeling procedure shown here, an attractive option for site‐directed solid‐state NMR studies on other membrane proteins is offered due to the high intrinsic sensitivity of 19F‐MAS NMR.  相似文献   

8.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

9.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

10.
Cucurbit[7]uril (CB[7]), an uncharged and water‐soluble macrocyclic host, binds protonated amino saccharides (D ‐glucosamine, D ‐galactosamine, D ‐mannosamine and 6‐amino‐6‐deoxy‐D ‐glucose) with excellent affinity (Ka=103 to 104 M ?1). The host–guest complexation was confirmed by NMR spectroscopy, isothermal titration calorimetry (ITC), and MALDI‐TOF mass spectral analyses. NMR analyses revealed that the amino saccharides, except D ‐mannosamine, are bound as α‐anomers within the CB[7] cavity. ITC analyses reveal that CB[7] has excellent affinity for binding amino saccharides in water. The maximum affinity was observed for D ‐galactosamine hydrochloride (Ka=1.6×104 M ?1). Such a strong affinity for any saccharide in water using a synthetic receptor is unprecedented, as is the supramolecular stabilization of an α‐anomer by the host.  相似文献   

11.
A series of germasesquioxides and germatranes containing α‐amino acid or α‐aminophosphonic acid moieties was synthesized by the reaction of β‐trichlorogermylpropionyl chloride with α‐amino acid esters or α‐aminophosphonates. The structures of all products were confirmed by 1H NMR, 31P NMR, and IR spectra, and elemental analyses. The intramolecular monocyclic penta‐coordinated structure of the trichlorogermyl intermediate was determined by X‐ray diffraction. The X‐ray analyses showed that the geometry about the germanium atom was a slightly distorted trigonal bipyramid, and a coordinate covalent bond exists between the oxygen and the germanium atoms. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 73–78, 1999  相似文献   

12.
Skyllamycin is a non‐ribosomally synthesized cyclic depsipeptide from Streptomyces sp. Acta 2897 that inhibits PDGF‐signaling. The peptide scaffold contains an N‐terminal cinnamoyl moiety, a β‐methylation of aspartic acid, three β‐hydroxylated amino acids and one rarely occurring α‐hydroxy glycine. With the exception of α‐hydroxy glycine, the stereochemistry of the amino acids was assigned by comparison to synthetic reference amino acids applying chiral GC‐MS and Marfey‐HPLC analysis. The stereochemistry of α‐hydroxy glycine, which is unstable under basic and acidic conditions, was determined by conformational analysis, employing a combination of data from NOESY‐NMR spectroscopy, simulated annealing and free MD simulations. The simulation procedures were applied for both R‐ and S‐configured α‐hydroxy glycine of the skyllamycin structure and compared to the NOESY data. Both methods, simulated annealing and free MD simulations independently support S‐configured α‐hydroxy glycine thus enabling the assignment of all stereocenters in the structure of skyllamycin and devising the role of two‐component flavin dependent monooxygenase (Sky39) as S‐selective.  相似文献   

13.
The introduction of an amide bond linking side chains of the first and fifth amino acids forms a cyclic pentapeptide that optimally stabilizes the smallest known α‐helix in water. The origin of the stabilization is unclear. The observed dependence of α‐helicity on the solvent and cyclization linker led us to discover a novel long‐range n to π* interaction between a main‐chain amide oxygen and a uniquely positioned carbonyl group in the linker of cyclic pentapeptides. CD and NMR spectra, NMR and X‐ray structures, modelling, and MD simulations reveal that this first example of a synthetically incorporated long‐range n to π* CO???Cγ=Ο interaction uniquely enforces an almost perfect and remarkably stable peptide α‐helix in water but not in DMSO. This unusual interaction with a covalent amide bond outside the helical backbone suggests new approaches to synthetically stabilize peptide structures in water.  相似文献   

14.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

15.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

16.
A series of 18‐fluoro thiastearates were prepared and incubated with a yeast Δ9‐desaturating system. The relative efficiency of desaturase‐mediated sulfoxidation was monitored via 19F‐NMR analysis of the sulfoxide products, and a strong preference for oxo transfer to the S‐atom occupying the 9‐position was confirmed. The oxidation profile obtained in this manner matched that of analogous experiments with non‐fluorinated substrates. These results form the basis of a versatile 19F‐NMR‐based method for mapping the position of the putative diiron oxidant relative to substrate, and has potential application to the study of membrane‐bound desaturases in vitro.  相似文献   

17.
Metal Complexes of Biologically Important Ligands. CLXV N,O‐Chelate Complexes of α‐Amino Acid Anions with Cyclopalladated N,N‐Dimethylferrocenecarbothioamide A short literature review on the reactions of various chlorobridged complexes with α‐aminoacidates, α‐amino acid esters, peptide ester or derivatives of amino acids is given. The chloro bridged o‐palladated N,N‐dimethylferrocenecarbothioamide [(fct)Pd(μ‐Cl)2Pd(fct)] reacts with the anions of glycine, L‐alanine, L‐proline, L‐valine, L‐phenylalanine, L‐leucine, L‐isoleucine to give the N,O‐chelates [(fct)Pd(N,O‐α‐aminocarboxylate)] ( 1 – 7 ). Due to the planary chirality of the unsymmetrically disubstituted cyclopentadienyl iron moiety of fct the complexes 2 – 7 with optically active amino acidate ligands are formed as a mixture of two diastereoisomers, which can be detected by their NMR spectra.  相似文献   

18.
《化学:亚洲杂志》2017,12(10):1087-1094
Aiming at precisely arranging several proteinogenic α‐amino acids on a folded scaffold, we have developed a cyclic hexapeptide comprising an alternate sequence of biphenyl‐cored ζ‐amino acids and proteinogenic α‐amino acids such as l ‐leucine. The amino acids were connected by typical peptide synthesis, and the resultant linear hexapeptide was intramolecularly cyclized to form a target cyclic peptide. Theoretical analyses and NMR spectroscopy suggested that the cyclic peptide was folded into an unsymmetrical conformation, and the structure was likely to be flexible in CHCl3. The optical properties including UV/Vis absorption, fluorescence, and circular dichroism (CD) were also evaluated. Furthermore, the cyclic peptide became soluble in water by introducing three carboxylate groups at the periphery of the cyclic skeleton. This α/ζ‐alternating cyclic peptide is therefore expected to serve as a unique scaffold for arranging several functionalities.  相似文献   

19.
Despite recent breakthroughs in the structural characterization of G‐protein‐coupled receptors (GPCRs), there is only sparse data on how GPCRs recognize larger peptide ligands. NMR spectroscopy, molecular modeling, and double‐cycle mutagenesis studies were integrated to obtain a structural model of the peptide hormone neuropeptide Y (NPY) bound to its human G‐protein‐coupled Y2 receptor (Y2R). Solid‐state NMR measurements of specific isotope‐labeled NPY in complex with in vitro folded Y2R reconstituted into phospholipid bicelles provided the bioactive structure of the peptide. Guided by solution NMR experiments, it could be shown that the ligand is tethered to the second extracellular loop by hydrophobic contacts. The C‐terminal α‐helix of NPY, which is formed in a membrane environment in the absence of the receptor, is unwound starting at T32 to provide optimal contacts in a deep binding pocket within the transmembrane bundle of the Y2R.  相似文献   

20.
Fluorine NMR paramagnetic relaxation enhancement was evaluated as a versatile approach for extracting distance information in selectively F‐labeled proteins. Proof of concept and initial applications are presented for the HIV‐inactivating lectin cyanovirin‐N. Single F atoms were introduced at the 4‐, 5‐, 6‐ or 7 positions of Trp49 and the 4‐position of Phe4, Phe54, and Phe80. The paramagnetic nitroxide spin label was attached to Cys residues that were placed into the protein at positions 50 or 52. 19F‐T2 NMR spectra with different relaxation delays were recorded and the transverse 19F‐PRE rate, 19F‐Γ2, was used to determine the average distance between the F nucleus and the paramagnetic center. Our data show that experimental 19F PRE‐based distances correspond to 0.93 of the 1HN‐PRE distances, in perfect agreement with the gyromagnetic γ19F/γ1H ratio, thereby demonstrating that 19F PREs are excellent alternative parameters for quantitative distance measurements in selectively F‐labeled proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号