首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective doses of the Momordica charantia fruit pulp (MCF) ethanolic extract on pancreatic β-cells modulation in neonatally streptozotocin-induced type 2 diabetic rats were studied. Diabetic rats (n=8) were treated with MCF extract (400 mg kg(-1) day(-1)) or glibenclamide (5 mg kg(-1)) for 28 days. Control rats (n=11) and untreated diabetic rats (n=8) received only water. Fasting glucose, serum insulin (by ELISA) and β-cell function (HOMA %B by homeostasis model assessment) were measured. β- and α-cells were identified by immunostaining, nuclei by DAPI, and β-cell size and number by morphometry. Significant improvement of fasting blood glucose, serum insulin and β-cell function was observed with the MCF extract for the diabetic rat model. The islet size, total β-cell area and number of β-cells were increased to almost double in the diabetic rats treated with MCF extract as compared to the untreated diabetic rats. The number of α-cells did not change significantly. Insulin granules in β-cells were notably reduced in diabetic islets as compared to control islets. However, extract-treated diabetic rat β-cells were abundant with insulin granules, which was comparable to non-diabetic control islets. The modulation of pancreatic β-cells may be involved in the experimental observation of anti-diabetic effects of M. charantia extract.  相似文献   

2.
This study was designed to investigate the chemical profile, antihyperglycemic and antilipidemic effect of total methanolic extract (TME) of Bassia eriophora and isolated pure compound umbelliferone (UFN) in high-fat diet (HFD)- and streptozotocin (STZ)- induced diabetic rats. TME was subjected to various techniques of chromatography to yield UFN. Diabetes was induced after eight weeks of HFD by administration of STZ (40 mg/kg) intraperitoneally, and experimental subjects were divided into five groups. The diabetic control showed an increase in levels of blood glucose throughout the experiment. Treatments were initiated in the other four groups with glibenclamide (GLB) (6 mg/kg), TME (200 mg/kg and 400 mg/kg) and isolated UFN (50 mg/kg) orally. The effect on blood glucose, lipid profile and histology of the pancreatic and adipose tissues was assessed. Both 200 and 400 mg/kg of TME produced a comparably significant decrease in blood glucose levels and an increase in insulin levels with GLB. UFN began to show a better blood sugar-lowering effect after 14 days of treatment, comparatively. However, both 400 mg/kg TME and UFN significantly returned blood glucose levels in diabetic rats compared to normal rats. Analysis of the lipid profile showed that while HFD + STZ increased all lipid profile parameters, TME administration produced a significant decrease in their levels. Histopathological examinations showed that treatment with TME and UFN revealed an improved cellular architecture, with the healthy islets of Langerhans and compact glandular cells for pancreatic cells distinct from damaged cells in non-treated groups. Conversely, the adipose tissue displayed apparently normal polygonal fat cells. Therefore, these results suggest that TME has the potential to ameliorate hyperglycemia conditions and control lipid profiles in HFD + STZ-induced diabetic rats.  相似文献   

3.
Preliminary investigations were carried out to evaluate the antidiabetic effects of the leaves of O. stamineus extracted serially with solvents of increasing polarity (petroleum ether, chloroform, methanol and water); bioassay-guided purification of plant extracts using the subcutaneous glucose tolerance test (SbGTT) was also carried out. Only the chloroform extract, given at 1 g/kg body weight (b.w.), significantly reduced (P < 0.05) the blood glucose level of rats loaded subcutaneously with 150 mg/kg (b.w.) glucose. The active chloroform extract of?O. stamineus was separated into five fractions using a dry flash column chromatography method. Out of the five fractions tested, only chloroform fraction 2 (C?2), at the dose of 1 g/kg (b.w.) significantly inhibited (P < 0.05) blood glucose levels in SbGTT. Active C?2 was split into two sub-fractions C?2-A and C?2-B, using a dry flash column chromatography method. The activities C?2-A and C?2-B were investigated using SbGTT, and the active sub-fraction was then further studied for anti-diabetic effects in a streptozotocin-induced diabetic rat model. The results clearly indicate that C?2-B fraction exhibited a blood glucose lowering effect in fasted treated normal rats after glucose-loading of 150 mg/kg (b.w.). In the acute streptozotocin-induced diabetic rat model, C?2-B did not exhibit a hypoglycemic effect on blood glucose levels up to 7 hours after treatment. Thus, it appears that C?2-B functions similarly to metformin, which has no hypoglycemic effect but demonstrates an antihyperglycemic effect only in normogycemic models. The effect of C?2-B may have no direct stimulatory effects on insulin secretion or on blood glucose levels in diabetic animal models. Verification of the active compound(s) within the active fraction (C?2-B) indicated the presence of terpenoids and, flavonoids, including sinensitin.  相似文献   

4.
Launaea nudicaulis is used in folk medicine worldwide to treat several diseases. The present study aimed to assess the antidiabetic activity of L. nudicaulis ethanolic extract and its effect on diabetic complications in streptozotocin-induced hyperglycemic rats. The extract was orally administrated at 250 and 500 mg/kg/day for 5-weeks and compared to glibenclamide as a reference drug at a dose of 5 mg/kg/day. Administration of the extract exhibited a potential hypoglycemic effect manifested by a significant depletion of serum blood glucose concurrent with a significant elevation in serum insulin secretion. After 5-weeks, extract at 250 and 500 mg/kg/day decreased blood glucose levels by about 53.8 and 68.1%, respectively, compared to the initial values (p ≤ 0.05). The extract at the two dosages prevented weight loss of rats from the 2nd week till the end of the experiment, compared to diabetic control rats. The extract further exhibited marked improvement in diabetic complications including liver, kidney and testis performance, oxidative stress, and relative weight of vital organs, with respect to diabetic control. Histopathological examinations confirmed the previous biochemical analysis, where the extract showed a protective effect on the pancreas, liver, kidney, and testis that degenerated in diabetic control rats. To characterize extract composition, UPLC-ESI–qTOF-MS identified 85 chromatographic peaks belonging to flavonoids, phenolics, acyl glycerols, nitrogenous compounds, and fatty acids, with four novel phenolics reported. The potential anti-diabetic effect warrants its inclusion in further studies and or isolation of the main bioactive agent(s).  相似文献   

5.
Gynura procumbens (Lour.) Merr (family Compositae) is cultivated in Southeast Asia, especially Indonesia, Malaysia and Thailand, for medicinal purposes. This study evaluated the in vivo hypoglycemic properties of the water extract of G. procumbens following 14 days of treatment and in vitro in RIN-5F cells. Glucose absorption from the intestines and its glucose uptake in abdominal skeletal muscle were assessed. The antidiabetic effect of water extract of G. procumbens leaves was investigated in streptozotocin-induced diabetic rats. The intraperitoneal glucose tolerance test (IPGTT) was performed in diabetic rats treated with G. procumbens water extract for 14 days. In the IPGTT, blood was collected for insulin and blood glucose measurement. After the IPGTT, the pancreases were collected for immunohistochemical study of β-cells of the islets of Langerhans. The possible antidiabetic mechanisms of G. procumbens were assessed through in vitro RIN-5F cell study, intestinal glucose absorption and glucose uptake by muscle. The results showed that G. procumbens significantly decreased blood glucose levels after 14 days of treatment and improved outcome of the IPGTT. However, G. procumbens did not show a significant effect on insulin level either in the in vivo test or the in vitro RIN-5F cell culture study. G. procumbens also showed minimal effects on β-cells of the islets of Langerhans in the pancreas. However, G. procumbens only significantly increased glucose uptake by muscle tissues. From the findings we can conclude that G. procumbens water extract exerted its hypoglycemic effect by promoting glucose uptake by muscles.  相似文献   

6.
Increased blood glucose in diabetic individuals results in the formation of advanced glycation end products (AGEs), causing various adverse effects on kidney cells, thereby leading to diabetic nephropathy (DN). In this study, the antiglycative potential of Swertiamarin (SM) isolated from the methanolic extract of E. littorale was explored. The effect of SM on protein glycation was studied by incubating bovine serum albumin with fructose at 60 °C in the presence and absence of different concentrations of swertiamarin for 24 h. For comparative analysis, metformin was also used at similar concentrations as SM. Further, to understand the role of SM in preventing DN, in vitro studies using NRK-52E cells were done by treating cells with methylglyoxal (MG) in the presence and absence of SM. SM showed better antiglycative potential as compared to metformin. In addition, SM could prevent the MG mediated pathogenesis in DN by reducing levels of argpyrimidine, oxidative stress and epithelial mesenchymal transition in kidney cells. SM also downregulated the expression of interleukin-6, tumor necrosis factor-α and interleukin-1β. This study, for the first time, reports the antiglycative potential of SM and also provides novel insights into the molecular mechanisms by which SM prevents toxicity of MG on rat kidney cells.  相似文献   

7.
The hypoglycemic and antioxidants activities of the methanol extract of Lepidium sativum seeds was tested in alloxan-induced diabetic male rats. Thirty male albino rats weighing 190–200 g were divided into five groups as follows: negative control, positive control and three diabetic groups treated with three concentrations of L. sativum methanol extract for four weeks. Induction of hyperglycemia in the positive control group increased blood glucose, glycated hemoglobin A1c, immunoglobulins, liver enzyme, lipid peroxide and kidney function, total cholesterol, low-density lipoproteins, very low-density lipoproteins and decreased antioxidants and high-density lipoproteins compared with the negative control. Furthermore, pancreas tissues showed pathological changes compared with the negative control. Treating the diabetic rats with L. sativum methanol extract decreased blood sugar and restored all biochemical and histological changes to the normal. It could be concluded that L. sativum methanol extract succeeded in controlling diabetes, increasing antioxidants and ameliorating lipid profile.  相似文献   

8.
The methanolic extract from the whole plant of Sinocrassula indica (Crassulaceae) was found to inhibit the increase in serum glucose levels in oral administration of sucrose and glucose in rats at a dose of 250 mg/kg (p.o.). However, the extract did not inhibit the increase in serum glucose levels after intraperitoneal administration of glucose in these animals but did partly inhibit the gastric emptying. On the other hand, this extract significantly inhibited the increase in serum glucose levels after administration for 2 weeks in KK-A(y) mice, a genetically type II diabetic mice, at a dose of 250 mg/kg/d (p.o.) without significant changes of the weights of body, liver, and visceral fat. From the extract, four new acylated flavonol glycosides, sinocrassosides A(1), A(2), B(1), and B(2), were isolated together with 11 flavonoids and 2 megastigmanes. The absolute stereostructures of the four new compounds were elucidated on the basis of chemical and physicochemical evidence.  相似文献   

9.
Jo K  Lee SE  Lee SW  Hwang JK 《Natural product research》2012,26(17):1610-1615
Prunus yedoensis Matsum. is used as a medicinal plant to alleviate symptoms of diabetes; however, the molecular mechanism underlying its antihyperglycaemic activity is unknown. In this study, we investigated the antihyperglycaemic effects of P. yedoensis and its molecular mechanism. Prunus yedoensis leaf extract (PLE) increased the glucose uptake of phosphorylatinginsulin receptor substrate (IRS)-1, 3'-phosphoinositide-dependent kinase (PDK)-1 and Akt PLE, and also increased the phosphorylation of AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38 MAPK). PLE-stimulated glucose uptake was blocked by an AMPK inhibitor (Compound C) and a p38 MAPK inhibitor (SB203580). Inhibition of AMPK activity reduced p38 MAPK phosphorylation, whereas the inhibition of p38 MAPK activity did not affect AMPK phosphorylation. Pretreatment with the phosphatidylinositol 3-kinase inhibitor LY294002 and Compound C reduced PLE-stimulated glucose uptake. Our results demonstrate that PLE stimulated glucose uptake by activating both insulin signalling and AMPK-p38 MAPK pathways. PLE shows potential as a natural antihyperglycaemic agent.  相似文献   

10.
The methanolic extract from the male flowers of Borassus flabellifer was found to inhibit the increase of serum glucose levels in sucrose-loaded rats at a dose of 250 mg/kg, p.o. From the methanolic extract, six new spirostane-type steroid saponins, borassosides A-F (1-6), were isolated together with 23 known constituents. The structures of borassosides (1-6) were elucidated on the basis of chemical and physicochemical evidences. In addition, the principal steroid saponin, dioscin (13), inhibited the increase of serum glucose levels in sucrose-loaded rats at a dose of 50 mg/kg, p.o.  相似文献   

11.
Chalcone-1-deoxynojirimycin heterozygote (DC-5), a novel compound which was designed and synthesized in our laboratory for diabetes treatment, showed an extremely strong in vitro inhibitory activity on α-glucosidase in our previous studies. In the current research, its potential in vivo anti-diabetic effects were further investigated by integration detection and the analysis of blood glucose concentration, blood biochemical parameters, tissue section and gut microbiota of the diabetic rats. The results indicated that oral administration of DC-5 significantly reduced the fasting blood glucose and postprandial blood glucose, both in diabetic and normal rats; meanwhile, it alleviated the adverse symptoms of elevated blood lipid level and lipid metabolism disorder in diabetic rats. Furthermore, DC-5 effectively decreased the organ coefficient and alleviated the pathological changes of the liver, kidney and small intestine of the diabetic rats at the same time. Moreover, the results of 16S rDNA gene sequencing analysis suggested that DC-5 significantly increased the ratio of Firmicutes to Bacteroidetes and improved the disorder of gut microbiota in diabetic rats. In conclusion, DC-5 displayed a good therapeutic effect on the diabetic rats, and therefore had a good application prospect in hypoglycemic drugs and foods.  相似文献   

12.
The plant Krameria pauciflora MOC et. Sessé ex DC. is used as an anti-inflammatory and antidiabetic in traditional medicine. The aim of this study was to evaluate the in vivo anti-inflammatory and antidiabetic effects of a methanol extract from the roots of K. pauciflora. Dichloromethane and ethyl acetate extracts obtained by partitioning the methanol extract were also evaluated. Complete methanol and dichloromethane extracts showed anti-inflammatory effects at 3 mg/kg. An anti-inflammatory effect similar to indomethacin (10 mg/kg) was observed when the methanol and dichloromethane extracts, which contain a cycloartane-type triterpene and an sterol, were administered orally at several doses (3, 10, 30 and 100 mg/kg), whereas no anti-inflammatory effect was observed at any dose for the ethyl acetate extract, which contains catechin-type flavonoids. The antidiabetic effect of each extract was also determined. An antihyperglycaemic effect was observed in diabetic rats, but no effect in normoglycaemic animals was observed when the methanol extract was administrated at 30 mg/kg. All of the extracts exhibited radical scavenger activity. Additionally, constituents from all of the extracts were identified by NMR. This article supports the use of K. pauciflora as an anti-inflammatory because it exhibits a similar effect to indomethacin. However, its antidiabetic effect is not completely clear, although it could be useful for preventing diabetic complications.  相似文献   

13.
Saponifiable and unsaponifiable fractions of Ficus microcarpa leaves hexane extract have been phytochemically studied and evaluated for its hypolipidaemic and antioxidant effects in hypercholesterolemic rats. The effect of the extract on the lipid profile was assessed by measuring the levels of total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides, phospho and total lipids. Lipid peroxides, glutathione and superoxide dismutase were measured as antioxidants. The work was extended to evaluate liver function indices as well as the histopathological picture of the liver after treatment. Treatment with leaves extract (500 mg kg?1 body weight) 5 times/week for 9 weeks at the same time of cholesterol administration (30 mg/0.3 mL 0.7% tween/animal) recorded an improvement of lipid profile, antioxidants, liver function enzymes and the liver histopathological picture. The lipoidal matters of the unsaponifiable fraction of the hexane extract by GC/MS led to the identification of 22 compounds, while saponifiable fraction by (MS/MS) technique led to identification of 13 unsaturated and saturated fatty acid methyl ester derivatives. It can be concluded that the hexane extract of F. microcarpa L has been proved to have hypolipidaemic and antioxidant effects in hypercholesterolemic rats through its role in counteracting LDL oxidation, enhancement of HDL synthesis and inhibition of lipid peroxidation.  相似文献   

14.
《Analytical letters》2012,45(12):2261-2265
Abstract

The effect of various routes of blood collection on blood glucose concentrations have been examined. It was observed that in normal rats the blood collection from heart immediately after cervical dislocation showed 50% higher values as compared to tail-vein of live animals, while the blood collection by tail-vein and neck-cutting did not produce a difference in normal rats. The blood glucose values of diabetic rats were higher by 15 to 18% when blood was collected from heart or by neck-cutting in comparison to tail-vein.  相似文献   

15.
The Catharanthus roseus plant has been used traditionally to treat diabetes mellitus. Scientific evidence supporting the antidiabetic effects of this plant’s active ingredient-vindoline has not been fully evaluated. In this study, extracts of C. roseus and vindoline were tested for antioxidant activities, alpha amylase and alpha glucosidase inhibitory activities and insulin secretory effects in pancreatic RIN-5F cell line cultured in the absence of glucose, at low and high glucose concentrations. The methanolic extract of the plant showed the highest antioxidant activities in addition to the high total polyphenolic content (p < 0.05). The HPLC results exhibited increased concentration of vindoline in the dichloromethane and the ethylacetate extracts. Vindoline showed noticeable antioxidant activity when compared to ascorbic acid at p < 0.05 and significantly improved the in vitro insulin secretion. The intracellular reactive oxygen species formation in glucotoxicity-induced cells was significantly reduced following treatment with vindoline, methanolic and the dichloromethane extracts when compared to the high glucose untreated control (p < 0.05). Plant extracts and vindoline showed weaker inhibitory effects on the activities of carbohydrate metabolizing enzymes when compared to acarbose, which inhibited the activities of the enzymes by 80%. The plant extracts also exhibited weak alpha amylase and alpha glucosidase inhibitory effects.  相似文献   

16.
Hypoglycaemic activity was observed in normoglycaemic mice orally administered with the aqueous Smallanthus sonchifolius leaf tea extract, alloxan-induced diabetic mice orally administered with ent-kaurenoic acid (1), and normoglycaemic mice intraperitoneally administered with 1 from S. sonchifolius leaves. A single dose administration of 50 mg kg(-1) BW yacon leaf tea extract demonstrated immediate but relatively short hypoglycaemic activity, with significant effects observed during 1-2 h. Similarly, administration with 100 mg kg(-1) BW yacon leaf tea extract obtained by heavy stirring in hot water demonstrated a more potent activity compared to the positive control at 1.5-2.0 h. Oral administration of 1 did not affect the blood glucose level of the alloxan-induced diabetic mice, but a single intraperitonial injection of 10 mg kg(-1) BW in normoglycaemic mice had consistent percent blood glucose reduction persisting from 1 to 2 h observation periods.  相似文献   

17.
An earlier anti-hyperglycemic study with serial crude extracts of Phaleria macrocarpa (PM) fruit indicated methanol extract (ME) as the most effective. In the present investigation, the methanol extract was further fractionated to obtain chloroform (CF), ethyl acetate (EAF), n-butanol (NBF) and aqueous (AF) fractions, which were tested for antidiabetic activity. The NBF reduced blood glucose (p < 0.05) 15 min after administration, in an intraperitoneal glucose tolerance test (IPGTT) similar to metformin. Moreover, it lowered blood glucose in diabetic rats by 66.67% (p < 0.05), similar to metformin (51.11%), glibenclamide (66.67%) and insulin (71.43%) after a 12-day treatment, hence considered to be the most active fraction. Further fractionation of NBF yielded sub-fractions I (SFI) and II (SFII), and only SFI lowered blood glucose (p < 0.05), in IPGTT similar to glibenclamide. The ME, NBF, and SFI correspondingly lowered plasma insulin (p < 0.05) and dose-dependently inhibited glucose transport across isolated rat jejunum implying an extra-pancreatic mechanism. Phytochemical screening showed the presence of flavonoids, terpenes and tannins, in ME, NBF and SFI, and LC-MS analyses revealed 9.52%, 33.30% and 22.50% mangiferin respectively. PM fruit possesses anti-hyperglycemic effect, exerted probably through extra-pancreatic action. Magniferin, contained therein may be responsible for this reported activity.  相似文献   

18.
In this study, catechin (CTN) isolated from Elaeagnus umbellata was evaluated for in vitro antioxidant potential and inhibition of carbohydrate digestive enzymes (α-amylase and α-glucosidase). The compound was also tested for its in vivo antidiabetic potential using Sprague-Dawley rats as experimental animals. The effects of various doses of catechin in STZ (Streptozotocin) induced diabetic rats on fasting blood glucose level, body weight, lipid parameters, hepatic enzymes, and renal functions were evaluated using the reported protocols. The CTN exhibited the highest percent antioxidant for free radical scavenging activity against DPPH and ABTS free radicals, and inhibited the activity of carbohydrate digestive enzymes (with percent inhibition values: 79 ± 1.5% α-amylase and 80 ± 1.1% α-glucosidase). Administration CTN and standard glibenclamide significantly decreased the fasting blood glucose level and increased the body weight in STZ-induced diabetic rats. CTN significantly decreased the different lipid parameters, hepatic, and renal function enzyme levels along with Hb1c level in diabetic rats, while significantly increasing the high-density lipoprotein (HDL) level with values comparable to the standard glibenclamide. Further, the altered levels of glutathione and lipid peroxides of liver and kidney tissues were restored (by CTN) to levels similar to the control group. CTN significantly increased the antioxidant enzyme activities, total content of reduced glutathione, and reduced the malondialdehyde (MDA) level in rat liver and kidney tissues homogenates, and also corrected the histopathological abnormalities, suggesting its antioxidant potential.  相似文献   

19.
Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases—including DM2—as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.  相似文献   

20.
Diabetic nephropathy is the most serious complication in diabetes mellitus. It is known that oxidative stress and inflammation play a central role in the development of diabetic nephropathy. In this study, we investigated that ferulic acid (FA) known as anti-oxidative agent could effect on diabetic nephropathy by anti-oxidative and anti-inflammatory mechanism. We examined the effects of FA in obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and non-diabetic control Long-Evans Tokushima Otsuka (LETO) rats. We treated FA to experimental rats from 26 to 45 weeks of age. We evaluated ACR, MDA and MCP-1 in 24 h urine and examined renal histopathology and morphologic change in extracted kidneys from rats. Also, we evaluated the ROS production and MCP-1 levels in cultured podocyte after FA treatment. In the FA-treated OLETF rats, blood glucose was significantly decreased and serum adiponectin levels were increased. Urinary ACR was significantly reduced in FA-treated OLETF rats compared with diabetic OLETF rats. In renal histopathology, FA-treated OLETF rats showed decreased glomerular basement membrane thickness, glomerular volume, and mesangial matrix expansion. FA treatment decreased oxidative stress markers and MCP-1 levels in 24 h urine of rats and supernatants of cultured podocyte. In conclusion, it was suggested that FA have protective and therapeutic effects on diabetic nephropathy by reducing oxidative stress and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号