首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical investigation on the stabilities and spectroscopic properties of the complexes formed by cyciobis(paraquat-p-anthracene) with pharmaceutical molecules were performed using the semi-empirical PM3 and B3LYP/3-21G methods. Based on the B3LYP/3-21G optimized geometries, the energies of the complexes were calculated at B3LYP/6-31G(d) level. The binding energies of the complexes were computed after the correction of basis set superposition error (BSSE). The energy gaps of the complexes are decreased due to the formation of the hydrogen bonds. The stretching vibrations of the C-H bonds adjacent to the hydrogen bonds in the IR spectra of the complexes calculated with PM3 method are red-shifted compared with those of the host. The chemical shifts of α-C and β-C atoms in the complexes calculated at B3LYP/3-21G level are shifted downfield due to the formation of the hydrogen bonds and the electron-withdrawing effect of the nitrogen atoms. The aromaticities of the complexes are improved because of the enlargement of the conjugation system and the overlap of electron cloud based on the nuclear independent chemical shifts (NICS) calculated at B3LYP/3-21G level.  相似文献   

2.
The computational models for a series of PPV (para‐phenylenevinylene) oligomers were formed based on the biphenyl and stilbene structures. These oligomers were optimized using DFT at B3LYP/6‐31G (d) level. On the basis of the optimized geometries, the electronic spectra and 13C NMR spectra were calculated by the INDO/CIS and B3LYP/6‐31G(d) methods, respectively. It indicates that the main absorptions in the electronic spectra are red‐shifted when the oligomer length is increased. The main absorptions in the electronic spectra and the 13C chemical shifts are altered obviously when the substituents on the matrix are changed.  相似文献   

3.
The self-assembly complexes formed by 2-pyridone derivatives were theoretically studied by the AM1 and DFT methods to determine their binding energies. The UV, IR, and NMR spectra of the complexes were calculated using the INDO/CIS, AM1, and B3LYP/3-21G methods, respectively. It was shown that the complexes could be formed by two monomers via double hydrogen bonding thanks to the negative binding energy. The affinity for binding was increased by substituents in the monomers. But this stimulating effect depended on the simultaneous influence of the electronic and steric effects. The first absorption bands in the UV spectra of the complexes were blue-shifted relative to that of the monomer because of their larger LUMO-HOMO energy gaps. As hydrogen bonds were formed, the N-H stretching vibrations of the monomers were weakened in the IR spectra of the complexes. And the chemical shifts of the C=C and C≡C carbon atoms were shifted downfield in the 13C NMR spectra. The article is published in the original.  相似文献   

4.
Theoretical studies on a series of oligobenzothiophenes were carded out with the AM 1 and DFT methods. Based on B3LYP/6-31G(D) optimized geometries, the electronic spectra, IR spectra and NMR spectra of the oligomers were calculated by INDO/CIS, AM1 and B3LYP/6-31G(D) methods, respectively. The energy gaps decrease, and the absorption in elec- tronic spectra exhibits a red-shift as polymerization increases. The IR frequencies are little affected by the polymerization and substituents. The ^13C chemical shifts are changed to be upfield since the electron-donating groups increase the electron density of carbon atoms but remain unchanged with the increase of polymerization.  相似文献   

5.
A series of derivatives were designed based on the model compound 1,4-divinyphenyl-bridged triphenylene, and the structures were studied using the AM1 method and density functional theory (DFT) at the B3LYP/3-21G level. On the basis of the B3LYP/3-21G optimized geometries, the electronic spectra and 13C NMR spectra of the derivatives were calculated using the INDO/CIS and B3LYP/3-21G methods, respectively. The energy gaps, abilities of accepting holes, and thermal stabilities were affected by the number and electron-donating capability as well as steric effect of the substituents. The red shifts of the first and main absorptions in the electronic spectra of the derivatives relative to those of the parent compound were predicted in the presence of the groups -CN and -OH. The chemical shift of the carbon atom on -CN was transferred to the low field under the effect of the nitrogen atom. The chemical shifts of the carbon atoms associated with -CN were transformed into the high field owing to the high electron density. The chemical shifts of the carbon atoms on the conjugation skeleton were almost unchanged.  相似文献   

6.
Tautomeric transformations of 4-methyldihydrofuro[2,3-h]coumarin-9-one and its 8-substituted derivatives were studied by 1H NMR, electronic absorption spectroscopy, and quantum chemistry. The 1H NMR spectra of these compounds in CDCl3 show that they exist in the ketone form, and in more polar sol- vents they can pass into the enol form. By electronic absorption spectroscopy it was established that the derivatives containing electron-acceptor substituents in the 8 position of the furanone ring undergo tautomeric transformations as the composition of the solvent is varied from 100% methanol to 100% CCl4. At the same time, the derivatives with electron-donor substituents in the same position do not show any specific alterations in the absorption spectra with solvent. Analogous pattern was observed in the enolization of substituted di- hydrofurocoumarinones by acetylation: In presence of electron-donor substituents in the 8 position, no acetyla- tion occurred, while with the compounds containing electron-acceptor substituents, the corresponding 9-acet- oxy-4-methylangelicins were prepared in high yields. Calculations by the PPP/CI method of the electronic absorption spectra 4-methyldihydrofuro[2,3-h]coumarin-9-one showed that in polar solvents (methanol) it prefers the enol form. Data of spectral measurements were compared with results of semiempirical (MNDO, AM1, and PM3) and nonempirical quantum-chemical calculations (with 3-21G, 6-31G*, and 31G** basis sets).  相似文献   

7.
The electronic structures of a series of ethylated single-walled carbon nanotubes (SWCNTs) were studied using density; function theory (DFT) at B3LYP/6-31G(d) level. The bond vertical to the main axis of the SWCNT was predicted to be the most thermodynamically stable additive site by ethylene. The energy gaps of the ethylated SWCNTs decrease with the decrease in the symmetries after the addition. The C-C and C=C stretching vibrations in the IR spectra of the ethylated SWCNTs, compared with those in the IR spectra of the pristine SWCNTs, are red-shifted. The chemical shifts at 172.9 ppm of the bridged carbon atoms in the NMR spectrum of (3,3)-C2H4(v) (C36C2H4) are shifted downfield in comparison with those at 144.7 ppm of the same carbon atoms in (3,3) (C36). Meanwhile, (3,3)-C2H4(v) (C36C2H4) shows a weakened anti-aromaticity owing to a nuclear independent chemical shift (NICS) at 3.6 ppm, relative to the NICS value at 6.3 ppm of (3,3) (C36).  相似文献   

8.
In the present work, molecular first-order hyperpolarizability (\(\beta _{\mathrm{tot}}\)) and dipole moment (d) are obtained at B3LYP/6–31G(d,p) level of theory by coupled perturbed Hartree–Fock method within the static approach. The investigated molecules are a series of substituted cobalt bis (dicarbollide) derivatives: Hydrogens bonded to the two carbon atoms are replaced by acceptor and donor electron substituents. Correlations between the Hammett electronic parameters of the substituents and the molecular properties are tested. Among them, the named push–pull compounds produced the largest calculated values of \(\beta _{\mathrm{tot}}\) and d. The UV–Vis spectra are reported for all studied compounds.  相似文献   

9.
Semi‐empirical AM1 method and density function theory were used to study the electronic structures and spectroscopic characteristics of the luminescent material analogous to PPV (para‐phenylenevinylene) oligomers attached to different substituents. It was indicated that the LUMO‐HOMO energy gaps were changed distinctly by means of the electron‐donating effect, conjugated effect and steric effect. The fluorescent wavelength in the fluorescent spectrum, the main absorption peaks in the electronic spectra and the chief bands in the IR spectra for the complexes were red‐shifted, relative to those of the parent molecule, owing to the extension of the conjugated system, the shrink of the energy gap and the weakening of the C=C bonds, respectively. The 13C chemical shifts were also moved obviously when the substituents on the matrix were changed.  相似文献   

10.
Binding affinities of a cyclic β-peptoid to amino acids were studied using the density functional theory (DFT) at the B3LYP/6-311G(d,p) level after the basis set superior error (BSSE). The host molecule possesses binding ability to amino acids since the binding energies of the complexes formed are negative. The complexes were stabilized via hydrogen bonds between the host and the guest molecules. Based on the B3LYP/6-31G(d) optimized geometries, electronic spectra of the complexes were calculated using the INDO/CIS method. 13C NMR spectra and nucleus-independent chemical shift (NICS) values of the complexes were computed at the B3LYP/6-31G(d) level. Carbon atoms in the carboxyl groups of the complexes are shifted downfield relative to those of the host. Some complexes exhibit aromaticity although the host shows anti-aromaticity. Formation of hydrogen bonds leads to cyclic current formation in these complexes.  相似文献   

11.
12.
Singly, doubly, and triply protonated forms of tetra- and octacarboxy (phthalocyaninato)copper(II) derivatives were identified and characterized by electronic absorption spectra and PM3 quantum chemical calculations. Molecules of carboxy-substituted phthalocyanine copper(II) complexes have a distorted nonplanar structure with specific charge distribution over meso-nitrogen atoms. Singly, doubly, and triply protonated complexes at the meso-nitrogen atoms and carboxy groups exist as mixtures of isomers, which is reflected in splitting of the Q band in the electronic absorption spectra and reduction of its symmetry. The formation of bifurcated hydrogen bonds O ... H+ ... N meso and O ... H+ ... O between the neighboring substituents was revealed.  相似文献   

13.
The relative stabilities of the 17 possible isomers for C80O2 based on C80 (D5d) were studied using Becke three parameters plus Lee, Yang, and Parr's (B3LYP) method and 6‐31G (d) basis set in density functional theory. The most stable geometry of C80O2 was predicted to be 23,24,27,28‐C80O2 (A) with annulene‐like structures, where the additive bonds are those between two hexagons (6/6 bonds) near the equatorial belt of C80 (D5d). Electronic spectra of C80O2 isomers were calculated based on the optimized geometries using intermediate neglect of differential overlap (INDO) calculation. Compared with those of C80 (D5d), the first absorptions in the electronic spectra of C80O2 are blue‐shifted owing to the wide energy gaps. 13C nuclear magnetic resonance spectra and nucleus independent chemical shifts of the C80O2 isomers were computed at B3LYP/6‐31G level. The chemical shifts of the bridged carbon atoms in the epoxy structures of C80O2 compared with those of the bridged carbon atoms in the annulene‐like structures are changed upfield. Generally, the isomers with the annulene‐like structures of C80O2 are more aromatic than those with the epoxy structures. The addition of the oxygen atoms near the pole of C80 (D5d) is favorable to improving the aromaticities of C80O2. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

14.
The proposed polar nucleophilic mechanism of MAO was investigated using quantum chemical calculations employing the semi-empirical PM3 method. In order to mimic the reaction at the enzyme's active site, the reactions between the flavin and the p-substituted benzylamine substrate analogs were modeled. Activation energies and rate constants of all the reactions were calculated and compared with the published experimental data. The results showed that electron-withdrawing groups at the para position of benzylamine increase the reaction rate. A good correlation between the log of the calculated rate constants and the electronic parameter (sigma) of the substituent was obtained. These results agree with the previous kinetic experiments on the effect of p-substituents on the reduction of MAO-A by benzylamine analogs. In addition, the calculated rate constants showed a correlation with the rate of reduction of the flavin in MAO-A. In order to verify the results obtained from the PM3 method single-point B3LYP/6-31G*//PM3 calculations were performed. These results demonstrated a strong reduction in the activation energy for the reaction of benzylamine derivatives having electron-withdrawing substituents, which is in agreement with the PM3 calculations and the previous experimental QSAR study. PM3 and B3LYP/6-31G* energy surfaces were obtained for the overall reaction of benzylamine with flavin. Results suggest that PM3 is a reasonable method for studying this kind of reaction. These theoretical findings support the proposed polar nucleophilic mechanism for MAO-A.  相似文献   

15.
Barbituric acid (BA) is a very important kind of compound in biological chemistry and medicine. It can be applied in abirritative medicine and antioxidants.1 It is an important sort of raw material for organic synthe-sis.2 It predicts the important reactive mechanism for organic synthesis.3 Some investigations for NLO prop-erties of a series of BA derivatives have been reported by Feng and coworkers in the view of theory.4,5 The Schiff base has extensive application in the fields of organi…  相似文献   

16.

Abstract  

Two novel N-phosphinyl ureas containing different substituents were synthesized and characterized by 1H, 13C, and 31P NMR, IR, UV, mass spectroscopy, and elemental analysis. The crystal structures of these compounds were determined by X-ray crystallography. The structure of one compound exhibits the presence of two independent forms of the molecule with equal occupancy in the lattice and theoretical data reveal the same stabilization energies for these conformers. The title molecules have anti conformation with respect to the C=O and P=O bonds, whereas the other compound shows syn configuration. Quantum chemical calculations were applied to clarify this conformational behavior. Furthermore, the molecular geometry and vibrational frequencies of the new derivatives in the ground state were calculated by using the Hartree–Fock (HF) and density functional method (B3LYP) with 6-31+G** and 6-311+G** basis sets and compared with experimental values. The new derivatives were additionally tested in view of their antibacterial properties.  相似文献   

17.
Eighteen possible isomers of C78(CH2)2 weTe investigated by the INDO method. It was indicated that the most stable isomer was 42,43,62,63-C78(CH2)2, where the -CH2 groups were added to the 6/6 bonds located at the same hexagon passed by the longest axis of C78 (C2v), to form cyclopropane structures. Based on the most stable four geometries of C78(CH2)2 optimized at B3LYP/3-21G level, the first absorptions in the electronic spectra calculated with the INDO/CIS method and the IR frequencies of the C-C bonds on the carbon cage computed using the AM1 method were blue-shifted compared with those of C78 (C2v) because of the bigger LUMO-HOMO energy gap and the less conjugated carbon cage after the addition. The chemical shifts of ^13C NMR for the carbon atoms on the added bonds calculated at B3LYP/3-21G level were moved upfield thanks to the conversion from sp^2-C to sp^3-C.  相似文献   

18.
The 1H and 13C NMR spectra of 9-acridinone and its five derivatives dissolved in CDCl3, CD3CN and DMSO-d6 were measured in order to reveal the influence of the constitution of the compounds and features of the solvents on chemical shifts and 1H-1H coupling constants. Experimental data were compared with theoretically predicted chemical shifts, on the GIAO/DFT level of theory, for DFT (B3LYP)/6-31G∗∗ optimized geometries of molecules—also for four other 9-acridinones. This comparison helped to ascribe resonance signals in the spectra to relevant atoms and enabled revelation of relations between chemical shifts and physicochemical features of the compounds. It was found that experimentally or theoretically determined 1H and 13C chemical shifts of selected atoms correlate with theoretically predicted values of dipole moments of the molecules, as well as bond lengths, atomic partial charges and energies of HOMO.  相似文献   

19.
Six styrene derivatives containing electron-withdrawing groups were synthesized and polymerized with anionic initiators in THF to afford stable anionic living polymers. The electron-withdrawing substituents are N,N-dialkylamide(1), N-alkylimino(2), oxazoline(3), tert-butyl ester(4), N,N-dialkylsulfonamide(5) and cyano(6) moieties. The polymers obtained have predictable molecular weights and narrow molecular weight distributions. The respective postpolymerizations proceeded with quantitative efficiency indicating that each polymer chain end retained the propagating reactivity. However, the resulting living polymers could not initiate the polymerizations of styrene and isoprene. On the other hand, the styrene derivatives(5 and 6) were polymerized with weak nucleophilic initiators, such as living polymer of tert-butyl methacrylate. These results suggest that the electron-withdrawing groups stabilize the living ends and also activate the respective monomers for anionic polymerization. The substitution effect reflects on the 13C NMR chemical shift of β-carbon of each vinyl group. The signal of the β-carbon appeared at lower magnetic field than that of styrene indicating electron deficiency on the carbon-carbon double bond of these monomers.  相似文献   

20.
The preparation of three new chiral derivatives of DMPU (N,N′‐dimethylpropyleneurea) is described (Schemes 24); one type of derivative carries 1‐phenylethyl or 1‐cyclohexylethyl groups at the N‐atoms of the tetrahydropyrimidin‐2(1H)‐one ring ( 2 and 4 ), another type of derivative is substituted at C(4) and C(6) of the heterocyclic ring ( 7 ). The potential of these chiral Lewis bases as promoters in the regio‐ and/or enantioselective addition of 2‐(1,3‐dithianyl)lithium to cyclohex‐2‐en‐1‐one was explored; they are all unable to effect enantioselective addition; the derivatives with branched substituents at the N‐atoms do not shift the addition mode from 1,2 to 1,4, while the 3,4,5,6‐tetrahydro‐1,3,4,6‐tetramethylpyrimidin‐2(1H)‐one does (Scheme 5). The results provide useful information regarding the nature of the nucleophilic organolithium reagent: obviously, the steric hindrance to Li complexation on the CO O‐atom of the tetrahydropyrimidin‐2(1H)‐one by branched substituents at N‐atoms (cf. X‐ray crystal structure of 2 in the Fig.) prevents solvent‐separated‐ion‐pair (SSIP) formation; this was confirmed by PM3 and B3LYP/3‐21‐G(d)//PM3 calculations (Scheme 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号