首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full geometry optimizations at the dispersion corrected DFT-BLYP/TZV2P level of theory have been performed for dimers of azulene that may serve as a model system for the van der Waals complexes of polar pi systems. The structures and binding energies for 11 dimers are investigated in detail. The DFT-D interaction energies have been successfully checked against results from the accurate SCS-MP2/aug-cc-pVTZ approach. Out of the nine investigated stacked complexes, eight have binding energies larger than 7.4 kcal/mol (SCS-MP2) that exceed the value of 7.1 kcal/mol for the best naphthalene dimer. T-shaped arrangements (CH...pi) are significantly less stable. Two out of the three best structures have an antiparallel alignment of the monomer dipole moments in the complex, although the best ones with a parallel orientation are only about 0.5 kcal/mol less strongly bound which points to a minor importance of dipole-dipole interactions to binding. Quite surprisingly, the energetically lowest structure (DeltaE = -9.2 kcal/mol) corresponds to a situation where the two seven-membered rings are located almost on top of each other (7-7) and the long molecular axes are rotated against each other by 130 degrees. The 7-7 structural motif is found also in other energetically low-lying structures, and the expected 5-7 (two-side) arrangement is less strongly bound by about 2 kcal/mol. This can be explained by the electrostatic potential of azulene that only partially reflects the charge separation according to the common 4n + 2 pi electron rule. General rules for predicting stable van der Waals complexes of polar pi systems are discussed.  相似文献   

2.
Interaction energies of the model H-bonded complexes, the formamide and formamidine dimers, as well as the stacked formaldehyde and ethylene dimers are calculated by the coupled cluster CCSD(T) method. These systems serve as a model for H-bonded and stacking interactions, typical in molecules participating in biological systems. We use the optimized virtual orbital space (OVOS) technique, by which the dimension of the space of virtual orbitals in coupled cluster CCSD(T) calculations can be significantly reduced. We demonstrate that when the space of virtual orbitals is reduced to 50% of the full space, which means reducing computational demands by 1 order of magnitude, the interaction energies for both H-bonded and stacked dimers are affected by no more than 0.1 kcal/mol. This error is much smaller than the error when interaction energies are calculated using limited basis sets.  相似文献   

3.
Potential energy curves for five complexes with weak to medium strong hydrogen bonds have been computed with dispersion corrected DFT methods. The electronic density based vdW-DF2 and VV10 van der Waals density functionals have been tested, as well as an atom pair-wise correction method (DFT-D3). The short-range exchange-correlation components BLYP and rPW86-PBE together with the extended aug-cc-pVQZ basis sets have been employed. Reference data have been computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory. The investigated systems are CH(4)·NH(3), Cl(3)CH·NH(3), NH(3)·NH(3), CH(3)F·C(2)H(2) and CH(3)F·H(2)O with binding energies ranging from -0.7 kcal mol(-1) to -5.5 kcal mol(-1). We find that all dispersion corrected methods perform reasonably well for these hydrogen bonds, but also observe distinct differences. The BLYP-D3 method provides the best results for three out of five systems. For the fluorinated complexes, the VV10 method gives remarkably good results. The vdW-DF2 method yields good interaction energies similar to the other methods (mean average deviation of 0.2-0.3 kcal mol(-1)), but fails to provide accurate equilibrium separations. Based on these results and previous experience with the computation of non-covalent interactions, for large-scale applications we can recommend DFT-D3 based structure optimizations with subsequent checking of interaction energies by single-point VV10 computations. Comparison of the DFT-D3 and VV10 results leads to the conclusion that the short-range exchange-correlation functional and not the dispersion correction mainly determines the achievable accuracy.  相似文献   

4.
Density functional theory (DFT-D) and semi-empirical (PM3-D) methods having an added dispersion correction have been used to study stabilising carbohydrate-aromatic and amino acid-aromatic interactions. The interaction energy for three simple sugars in different conformations with benzene, all give interaction energies close to 5 kcal mol(-1). Our original parameterization of PM3 (PM3-D) seriously overestimates this value, and has prompted a reparametrization which includes a modified core-core interaction term. With two additional parameters, the carbohydrate complexes, as well as the S22 data set, are well reproduced. The new PM3 scheme (PM3-D*) is found to describe the peptide bond-aromatic ring interactions accurately and, together with the DFT-D method, it is used to investigate the interaction of six amino acids with pyrene. Whilst the peptide backbone can adopt both stacked and T-shaped structures in the complexes with similar interaction energies, there is a preference for the unsaturated ring to adopt a stacked structure. Thus, peptides in which the latter interactions are maximised are likely to be the most effective for the functionalisation of carbon nanotubes.  相似文献   

5.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

6.
Several economical methods for geometry optimization, that should be applicable to larger molecules, have been evaluated for 19 phosphorus acid derivatives. MP2/cc-pVDZ geometry optimizations are used as reference points and the geometries obtained from the other methods are evaluated with respect to deviations in bond lengths and angles, from the reference geometries. The geometry optimization methods are also compared to the much used B3LYP/6-31G(d) method. Single point energies obtained by subsequent EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) calculations on the respective equilibrium geometries are also reported relative to the energies obtained from the reference geometries. The geometries from HF/MIDI! optimizations were closer to those of the references than the geometries of the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! optimizations. The EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) single point energies obtained from the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! geometries gave a mean absolute deviation (MAD) from that of the reference geometries of 1.4-3.9 kcal mol m 1 . The HF/MIDI! geometries, however, gave EDF1/6-31+G(d) and B3LYP/6-31+G(d,p) energies with a MAD of only about 0.5 and 0.55 kcal mol m 1 respectively from the energies obtained with the reference geometries. Thus, use of HF/MIDI! for geometry optimization of phosphorus acids is a method that gives geometries of near-MP2 quality, resulting in a fair accuracy of energies in subsequent single point calculations, at a much lower computational cost other methods that give similar accuracies.  相似文献   

7.
Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. The study presents reference ab initio structures and interaction energies of selected base pairs with binding energies ranging from -5 to -47 kcal/mol. The molecular structures are obtained using the RI-MP2 (resolution of identity MP2) method with extended cc-pVTZ basis set of atomic orbitals. The RI-MP2 method provides results essentially identical with the standard MP2 method. The interaction energies are calculated using the Complete Basis Set (CBS) extrapolation at the RI-MP2 level. For some base pairs, Coupled-Cluster corrections with inclusion of noniterative triple contributions (CCSD(T)) are given. The calculations are compared with selected medium quality methods. The PW91 DFT functional with the 6-31G basis set matches well the RI-MP2/CBS absolute interaction energies and reproduces the relative values of base pairing energies with a maximum relative error of 2.6 kcal/mol when applied with Becke3LYP-optimized geometries. The Becke3LYP DFT functional underestimates the interaction energies by few kcal/mol with relative error of 2.2 kcal/mol. Very good performance of nonpolarizable Cornell et al. force field is confirmed and this indirectly supports the view that H-bonded base pairs are primarily stabilized by electrostatic interactions.  相似文献   

8.
With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.  相似文献   

9.
Planar H-bonded and stacked structures of guanine...cytosine (G.C), adenine...thymine (A...T), 9-methylguanine...1-methylcytosine (mG...mC), and 9-methyladenine...1-methylthymine (mA...mT) were optimized at the RI-MP2 level using the TZVPP ([5s3p2d1f/3s2p1d]) basis set. Planar H-bonded structures of G...C, mG...mC, and A...T correspond to the Watson-Crick (WC) arrangement, in contrast to mA...mT for which the Hoogsteen (H) structure is found. Stabilization energies for all structures were determined as the sum of the complete basis set limit of MP2 energies and a (DeltaE(CCSD(T)) - DeltaE(MP2)) correction term evaluated with the cc-pVDZ(0.25,0.15) basis set. The complete basis set limit of MP2 energies was determined by two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T and X = T and Q. This procedure is required since the convergency of the MP2 interaction energy for the present complexes is rather slow, and it is thus important to include the extrapolation to the complete basis set limit. For the MP2/aug-cc-pVQZ level of theory, stabilization energies for all complexes studied are already very close to the complete basis set limit. The much cheaper D-->T extrapolation provided a complete basis set limit close (by less than 0.7 kcal/mol) to the more accurate T-->Q term, and the D-->T extrapolation can be recommended for evaluation of complete basis set limits of more extended complexes (e.g. larger motifs of DNA). The convergency of the (DeltaE(CCSD(T)) - DeltaE(MP2)) term is known to be faster than that of the MP2 or CCSD(T) correlation energy itself, and the cc-pVDZ(0.25,0.15) basis set provides reasonable values for planar H-bonded as well as stacked structures. Inclusion of the CCSD(T) correction is essential for obtaining reliable relative values for planar H-bonding and stacking interactions; neglecting the CCSD(T) correction results in very considerable errors between 2.5 and 3.4 kcal/mol. Final stabilization energies (kcal/mol) for the base pairs studied are very substantial (A...T WC, 15.4; mA...mT H, 16.3; A...T stacked, 11.6; mA...mT stacked, 13.1; G...C WC, 28.8; mG...mC WC, 28.5; G...C stacked, 16.9; mG...mC stacked, 18.0), much larger than published previously. On the basis of comparison with experimental data, we conclude that our values represent the lower boundary of the true stabilization energies. On the basis of error analysis, we expect the present H-bonding energies to be fairly close to the true values, while stacked energies are still expected to be about 10% too low. The stacking energy for the mG...mC pair is considerably lower than the respective H-bonding energy, but it is larger than the mA...mT H-bonding energy. This conclusion could significantly change the present view on the importance of specific H-bonding interactions and nonspecific stacking interactions in nature, for instance, in DNA. Present stabilization energies for H-bonding and stacking energies represent the most accurate and reliable values and can be considered as new reference data.  相似文献   

10.
The CCSD(T) and CCSDT interaction energies were determined for model planar H-bonded complexes (formamide…formamide, formamidine…formamidine) and stacked complexes (ethylene…ethylene, formaldehyde…formaldehyde). Various basis sets from the 6-31G*(0.25) to aug-cc-pVDZ were used. Difference between CCSD(T) and CCSDT interaction energies were small and become negligible (bellow 0.1 kcal/mol) if the aug-cc-pVDZ (or aug-cc-pVDZ/cc-pVDZ) basis set was applied. This result strongly supports the use of the CCSD(T) method for determination of true stabilization energies of extended complexes.  相似文献   

11.
In spite of many theoretical and experimental attempts for understanding intramolecular hydrogen bonding (H-bonding) in carbohydrates, a direct quantification of individual intramolecular H-bond energies and the cooperativity among the H-bonded networks has not been reported in the literature. The present work attempts, for the first time, a direct estimation of individual intramolecular O-H...O interaction energies in sugar molecules using the recently developed molecular tailoring approach (MTA). The estimated H-bond energies are in the range of 1.2-4.1 kcal mol(-1). It is seen that the OH...O equatorial-equatorial interaction energies lie between 1.8 and 2.5 kcal mol(-1), with axial-equatorial ones being stronger (2.0-3.5 kcal mol(-1)). The strongest bonds are nonvicinal axial-axial H-bonds (3.0-4.1 kcal mol(-1)). This trend in H-bond energies is in agreement with the earlier reports based on the water-water H-bond angle, solvent-accessible surface area (SASA), and (1)H NMR analysis. The contribution to the H-bond energy from the cooperativity is also estimated using MTA. This contribution is seen to be typically between 0.1 and 0.6 kcal mol(-1) when H-bonds are a part of a relatively weak equatorial-equatorial H-bond network and is much higher (0.5-1.1 kcal mol(-1)) when H-bonds participate in an axial-axial H-bond network.  相似文献   

12.
To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.  相似文献   

13.
The geometries and interaction energies of stacked and hydrogen-bonded uracil dimers and a stacked adeninecdots, three dots, centeredthymine pair were studied by means of high-level quantum chemical calculations. Specifically, standard as well as counterpoise-corrected optimizations were performed at second-order Moller-Plesset (MP2) and coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)] levels with various basis sets up to the complete basis set limit. The results can be summarized as follows: (i) standard geometry optimization with small basis set (e.g., 6-31G(*)) provides fairly reasonable intermolecular separation; (ii) geometry optimization with extended basis sets at the MP2 level underestimates the intermolecular distances compared to the reference CCSD(T) results, whereas the MP2/cc-pVTZ counterpoise-corrected optimization agrees well with the reference geometries and, therefore, is recommended as a next step for improving MP2/cc-pVTZ geometries; (iii) the stabilization energy of stacked nucleic acids base pairs depends considerably on the method used for geometry optimization, so the use of reliable geometries, such as counterpoise-corrected MP2/cc-pVTZ ones, is recommended; (iv) the density functional theory methods fail completely in locating the energy minima for stacked structures and when the geometries from MP2 calculations are used, the resulting stabilization energies are strongly underestimated; (v) the self-consistent charges-density functional tight binding method, with inclusion of the empirical dispersion energy, accurately reproduces interaction energies and geometries of dispersion-bonded (stacked) complexes; this method can thus be recommended for prescanning the potential energy surfaces of van der Waals complexes.  相似文献   

14.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

15.
Dispersion-corrected density functional theory calculations (DFT-D3) were performed for the adsorption of CO on MgO and C(2) H(2) on NaCl surfaces. An extension of our non-empirical scheme for the computation of atom-in-molecules dispersion coefficients is proposed. It is based on electrostatically embedded M(4)X(4) (M=Na, Mg) clusters that are used in TDDFT calculations of dynamic dipole polarizabilities. We find that the C(MM)(6) dispersion coefficients for bulk NaCl and MgO are reduced by factors of about 100 and 35 for Na and Mg, respectively, compared to the values of the free atoms. These are used in periodic DFT calculations with the revPBE semi-local density functional. As demonstrated by calculations of adsorption potential energy curves, the new C(6) coefficients lead to much more accurate energies (E(ads)) and molecule-surface distances than with previous DFT-D schemes. For NaCl/C(2) H(2) we obtained at the revPBE-D3(BJ) level a value of E(ads) =-7.4 kcal mol(-1) in good agreement with experimental data (-5.7 to -7.1 kcal mol(-1)). Dispersion-uncorrected DFT yields an unbound surface state. For the MgO/CO system, the computed revPBE-D3(BJ) value of E(ads) =-4.1 kcal mol(-1) is also in reasonable agreement with experimental results (-3.0 kcal mol(-1)) when thermal corrections are taken into account. Our new dispersion correction also improves computed lattice constants of the bulk systems significantly compared to plain DFT or previous DFT-D results. The extended DFT-D3 scheme also provides accurate non-covalent interactions for ionic systems without empirical adjustments and is suggested as a general tool in surface science.  相似文献   

16.
In this article we present the first systematic study of the additive properties (i.e. degree of additivity) of the carbohydrate-aromatic moiety CH-π dispersion interaction. The additive properties were studied on the β-D-glucopyranose, β-D-mannopyranose and α-L-fucopyranose complexes with the naphthalene molecule by comparing the monodentate (single CH-π) and bidentate (two CH-π) complexes. All model complexes were optimized using the DFT-D approach, at the BP/def2-TZVPP level of theory. The interaction energies were refined using single point calculations at highly correlated ab initio methods at the CCSD(T)/CBS level, calculated as E + (E(CCSD(T))-E(MP2))(Small Basis). Bidentate complexes show very strong interactions in the range from -10.79 up to -7.15 and -8.20 up to -6.14 kcal mol(-1) for the DFT-D and CCSD(T)/CBS level, respectively. These values were compared with the sum of interaction energies of the appropriate monodentate carbohydrate-naphthalene complexes. The comparison reveals that the bidentate complex interaction energy is higher (interaction is weaker) than the sum of monodentate complex interaction energies. Bidentate complex interaction energy corresponds to 2/3 of the sum of the appropriate monodentate complex interaction energies (averaging over all modeled carbohydrate complexes). The observed interaction energies were also compared with the sum of interaction energies of the corresponding previously published carbohydrate-benzene complexes. Also in this case the interaction energy of the bidentate complex was higher (i.e. weaker interaction) than the sum of interaction energies of the corresponding benzene complexes. However, the obtained difference is lower than before, while the bidentate complex interaction energy corresponds to 4/5 of the sum of interaction energy of the benzene complexes, averaged over all structures. The mentioned comparison might aid protein engineering efforts where amino acid residues phenylalanine or tyrosine are to be replaced by a tryptophan and can help to predict the changes in the interactions. The observed results also show that DFT-D correctly describes the CH-π interaction energy and their additive properties in comparison to CCSD(T)/CBS calculated interaction energies. Thus, the DFT-D approach might be used for calculation of larger complexes of biological interest, where dispersion interaction plays an important role.  相似文献   

17.
The influence of natural and unnatural i, i + 4 aromatic side chain-side chain interactions on alpha-helix stability was determined in Ala-Lys host peptides by circular dichroism (CD). All interactions investigated provided some stability to the helix; however, phenylalanine-phenylalanine (F-F) and phenylalanine-pentafluorophenylalanine (F-f5F) interactions resulted in the greatest enhancement in helicity, doubling the helical content over i, i + 5 control peptides at internal positions. Quantification of these interactions using AGADIR multistate helix-coil algorithm revealed that the F-F and F-f5F interaction energies are equivalent at internal positions in the sequence (deltaGF-F = deltaGF-f5F = -0.27 kcal/mol), despite the differences in their expected geometries. As the strength of a face-to-face stacked phenyl-pentafluorophenyl interaction should surpass an edge-to-face or offset-stacked phenyl-phenyl interaction, we believe this result reflects the inability of the side chains in F-f5F to attain a fully stacked geometry within the context of an alpha-helix. Positioning the interactions at the C-terminus led to much stronger interactions (deltaGF-F = -0.8 kcal/mol; deltaGF-f5F = -0.55 kcal/mol) likely because of favorable chi(1) rotameric preferences for aromatic residues at C-capping regions of alpha-helices, suggesting that aromatic side chain-side chain interactions are an effective alpha-helix C-capping method.  相似文献   

18.
High‐level ab initio calculations have been carried out using a formamide–benzene model system to evaluate amide–π interactions. The interaction energies were estimated as a sum of the CCSD(T) correlation contribution and the HF energy at the complete basis set limit, for the geometries of the model structures at the energy minimum obtained by potential energy surface (PES) scans. NH/π geometry in a face‐on configuration was found to be the most attractive among the various geometries considered, with interaction energy of ?3.75 kcal/mol. An interaction energy of ?2.08 kcal/mol was calculated for the stacked N/Center type geometry, where the nitrogen atom of formamide points directly toward the center of the aromatic ring. The weakest C?O/π geometry, where a carbonyl oxygen atom points toward the plane of the aromatic ring, was found to have energy minimum at an intermolecular distance of 3.67 Å from the PES, with a repulsive interaction energy less than 1 kcal/mol. However, if there are simultaneous attractive interactions with other parts of the molecule besides the amide group, the weak repulsion could be easily overcome, to give a C?O/π geometry interaction. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

19.
The various sorts of complexes in which HArF and AuX (X = F, Cl, Br, I) can engage are probed by MP2/aug-cc-pVTZ calculations. The most weakly bound are those containing a halogen bond (XB) of the AuX⋯FArH sort, with binding energies less than 8 kcal/mol. H-bonded dimers FArH⋯XAu are a little stronger, held together by some 12 kcal/mol. Being the most strongly bound places the F atom of HArF roughly midway between Ar and Au in an F-shaped structure, bound by some 43–54 kcal/mol. The last sort of product involves atomic rearrangements wherein the H atom migrates from Ar to Au, followed by formation of a covalent Ar–Au bond. The resulting molecular unit is stabilized by 30–40 kcal/mol relative to the original HArF and AuX reactants. The H-bonded dimers are held together by an unusually large polarization component, surpassing electrostatic attraction, while dispersion predominates for the halogen bonds. Perturbations of the geometries and stretching frequencies offer a ready means of distinguishing the different types of complexes by spectroscopic techniques.  相似文献   

20.
The thermal instability of alpha-fluoroalcohols is generally attributed to a unimolecular 1,2-elimination of HF, but the barrier to intramolecular HF elimination from CF3OH is predicted to be 45.1 +/- 2 kcal/mol. The thermochemical parameters of trifluoromethanol were calculated using coupled-cluster theory (CCSD(T)) extrapolated to the complete basis set limit. High barriers of 42.9, 43.1, and 45.0 kcal/mol were predicted for the unimolecular decompositions of CH2FOH, CHF2OH, and CF3OH, respectively. These barriers are lowered substantially if cyclic H-bonded dimers of CF3OH with complexation energies of approximately 5 kcal/mol are involved. A six-membered ring dimer has an energy barrier of 28.7 kcal/mol and an eight-membered dimer has an energy barrier of 32.9 kcal/mol. Complexes of CF3OH with HF lead to strong H-bonded dimers, trimers and tetramers with complexation energies of approximately 6, 11, and 16 kcal/mol, respectively. The dimer, CH3OH:HF, and the trimers, CF3OH:2HF and (CH3OH)2:HF, have decomposition energy barriers of 26.7, 20.3, and 22.8 kcal/mol, respectively. The tetramer (CH3OH:HF)2 gives rise to elimination of two HF molecules with a barrier of 32.5 kcal/mol. Either CF3OH or HF can act as catalysts for HF-elimination via an H-transfer relay. Because HF is one of the decomposition products, the decomposition reactions become autocatalytic. If the energies due to complexation for the CF3OH-HF adducts are not dissipated, the effective barriers to HF elimination are lowered from approximately 20 to approximately 9 kcal/mol, which reconciles the computational results with the experimentally observed stabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号