首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques.  相似文献   

2.
Tendons and entheses are magnetic resonance (MR) “invisible” when imaged with conventional clinical pulse sequences. When the highly ordered, collagen-rich fibers in tendons and entheses are placed at the magic angle, dipolar interactions are decreased and their T2s are often considerably increased. The bulk magnetic susceptibility of tendons and entheses also varies with orientation to B0, leading to a direction-dependent resonance frequency shift. Ultrashort echo time (UTE) sequences with a minimum TE of 8 μs provide high signal from both tendons and entheses. The combination of a UTE sequence with an interleaved undersampled variable TE acquisition scheme provides a new approach for fast spectroscopic imaging of short T2 tissues. This UTE spectroscopic imaging (UTESI) technique provides quantitative information including T2?, chemical shift and resonance frequency shift due to bulk susceptibility effect. In this article, the orientational effects on tendons and entheses were investigated using a UTESI sequence on a clinical 3-T scanner. T2? was found to increase fivefold for tendons and twofold for entheses due to the magic angle effect. A resonance frequency shift up to 1.2 ppm was observed for both tendons and entheses due to the bulk susceptibility effect when their orientation was changed from 0° to 90° relative to B0.  相似文献   

3.
We describe the use of two-dimensional ultrashort echo time (2D UTE) sequences with minimum TEs of 8 μs to image and quantify cortical bone on a clinical 3T scanner. An adiabatic inversion pulse was used for long T(2) water and fat signal suppression. Adiabatic inversion prepared UTE acquisitions with varying TEs were used for T(2) measurement. Saturation recovery UTE acquisitions were used for T(1) measurement. Bone water concentration was measured with the aid of an external reference phantom. UTE techniques were evaluated on cadaveric specimens and healthy volunteers. A signal-to-noise ratio of around 30, contrast-to-noise ratio of around 27/20 between bone and muscle/fat were achieved in tibia in vivo with a nominal voxel size of 0.23 × 0.23 × 6.0 mm(3) in a scan time of 5 min. A mean T(1) of 223 ± 11 ms and mean T(2) of 390 ± 19 μs were found. Mean bone water concentrations of 23.3 ± 1.6% with UTE and 21.7 ± 1.3% with adiabatic inversion prepared UTE sequences were found in tibia in five normal volunteers. The results show that in vivo qualitative and quantitative evaluation of cortical bone is feasible with 2D UTE sequences.  相似文献   

4.
Collagen fibers in tendons and entheses are highly ordered. The protons within the bound water are subject to dipolar interactions whose strength depends on the orientation of the fibers to the static magnetic field B0. Clinical pulse sequences have been employed to investigate this magic angle effect of the Achilles tendon, but only limited to imaging appearance with a signal void at many angular orientations due to its short T2. Here we investigated the magic angle effect of the Achilles tendons and entheses on a clinical 3-T scanner using clinical sequences as well as an ultrashort TE sequence with a minimal TE of 8 μs. Qualitative and quantitative investigation of the angular-dependent imaging appearance, T1 and T2* values were performed on five ankle specimens. There was a significant increase in signal intensity for all pulse sequences near the magic angle. Mean T2* for tendon increased from 1.94±0.28 ms at 0° relative to the B0 field to 15.25±2.13 ms at 55°, and mean T1 increased from 598±37 ms at 0° to 621±44 ms at 55°. There was less magic angle effect for enthesis whose mean T2* increased from 4.12±0.37 ms at 0° to 12.46±1.78 ms at 55°, and mean T1 increased from 685±41 ms at 0° to 718±56 ms at 55°.  相似文献   

5.
Relaxation effects in the quantification of fat using gradient echo imaging   总被引:4,自引:0,他引:4  
Quantification of fat has been investigated using images acquired from multiple gradient echoes. The evolution of the signal with echo time and flip angle was measured in phantoms of known fat and water composition and in 21 research subjects with fatty liver. Data were compared to different models of the signal equation, in which each model makes different assumptions about the T1 and/or T2* relaxation effects. A range of T1, T2*, fat fraction and number of echoes was investigated to cover situations of relevance to clinical imaging. Results indicate that quantification is most accurate at low flip angles (to minimize T1 effects) with a small number of echoes (to minimize spectral broadening effects). At short echo times, the spectral broadening effects manifest as a short apparent T2 for the fat component.  相似文献   

6.
Truncation artifacts arise in magnetic resonance spectroscopic imaging (MRSI) of the human brain due to limited coverage of k-space necessitated by low SNR of metabolite signal and limited scanning time. In proton MRSI of the head, intense extra-cranial lipid signals “bleed” into brain regions, thereby contaminating signals of metabolites therein. This work presents a data acquisition strategy for reducing truncation artifact based on extended k-space coverage achieved with a dual-SNR strategy. Using the fact that the SNR in k-space increases monotonically with sampling density, dual-SNR is achieved in an efficient manner with a dual-density spiral k-space trajectory that permits a smooth transition from high density to low density. The technique is demonstrated to be effective in reducing “bleeding” of extra-cranial lipid signals while preserving the SNR of metabolites in the brain.  相似文献   

7.
The high sensitivity but low specificity of breast MRI has prompted exploration of breast (1)H MRS for breast cancer detection. However, several obstacles still prevent the routine application of in vivo breast (1)H MRS, including poor spatial resolution, long acquisition time associated with conventional multi-voxel MRS imaging (MRSI) techniques, and the difficulty of "extra" lipid suppression in a magnetic field with relatively poor achievable homogeneity compared to the brain. Using a combination of a recently developed echo-filter (EF) suppression technique and an elliptical sampling scheme, we demonstrate the feasibility of overcoming these difficulties. It is robust (the suppression technique is insensitive to magnetic field inhomogeneity), fast (acquisition time of about 12 min) and offers high spatial resolution (up to 0.6 cm(3) per voxel at 1.5 T with a TE of only 60 ms). This approach should be even better at 3 T with higher resolution and/or shorter TE.  相似文献   

8.
The osteochondral junction (OCJ) of the knee joint is comprised of multiple tissue components, including a portion of the deep layer cartilage, calcified cartilage, and subchondral bone. The OCJ is of increasing radiological interest as it may be relevant in the early pathogenesis of osteoarthritis (OA). Due to its short transverse relaxation, the OCJ is invisible to clinical MR sequences. The purpose of this study was to develop a fast 3D T1-weighted ultrashort echo time cones sequence with fat saturation (FS-UTE-Cones) for high resolution and high contrast imaging of the OCJ on a clinical 3T scanner. First, numerical simulations were performed to investigate how the flip angle affected the signal intensities and contrasts of both short and long T1 tissues. The results from these simulations demonstrated that higher short T1 contrast could be achieved with higher flip angle. Next, T1 relaxation was measured for the different layers of a human patellar cartilage sample, and the results showed that the deepest layer had a significantly shorter T1 value than other layers. Finally, a healthy knee joint was scanned with different flip angles and the OCJ was highlighted in the T1-weighted FS-UTE-Cones sequence using a flip angle greater than 20°. The clinical T2-weighted and proton density-weighted FSE sequences were also included for comparison, revealing a dark OCJ region. Representative T1-weighted FS-UTE-Cones images of the whole knee of a healthy volunteer showed high signal intensity bands in the OCJ regions of the patella, femur, and tibia. On the other hand, T1-weighted FS-UTE-Cones imaging of the knee joints of OA patients revealed regions with reduction or loss of these high signal intensity bands in the OCJ regions, indicating abnormal OCJ tissue composition. The proposed 3D T1-weighted FS-UTE-Cones sequence with a 3-min scan time may be very useful for demonstrating the involvement of the OCJ regions in early OA.  相似文献   

9.
A total of 4302 healthy blood donors were screened for elevated serum ferritin and transferrin saturation. Fifteen had increased serum ferritin at a follow-up examination. Five relatives of these donors also entered the study. Eleven patients had elevated liver iron concentrations, while five had normal liver iron concentrations. The R2 relaxation rate in the liver was first measured with a conventional multi-spin-echo imaging sequence, and then by a volume-selective spectroscopic multi-spin-echo sequence, in order to achieve a minimum echo time of 4 msec. No correlation was found between the relaxation rate R2 and the liver iron concentration, when R2 was calculated from the imaging data. Multi-exponential transverse relaxation could be resolved when the spectroscopic sequence was used. A strong correlation between the initial slope of the relaxation curve and the liver iron concentration was found (r = 0.90, p < 0.001). Signal intensity ratios between liver and muscle were calculated from the first three echoes in the multi-echo imaging sequence, and from a gradient echo sequence. A strong correlation between the logarithm of the signal intensity ratios and the liver iron concentration was found. Although both spectroscopic T2 relaxation time measurements and signal intensity ratios could be used to quantify liver iron concentration, the gradient echo imaging seemed to be the best choice. Gradient echo imaging could be performed during a single breath hold, so motion artifacts could be avoided. The accuracy of liver iron concentration estimates from signal intensity ratios in the gradient echo images was about 35%.  相似文献   

10.
Two rapid, pure phase encode, centric scan, Single Point Ramped Imaging with T1-Enhancement (SPRITE) MRI methods are described. Each retains the benefits of the standard SPRITE method, most notably the ability to image short T2* systems, while increasing the sensitivity and generality of the technique. The Spiral-SPRITE method utilizes a modified Archimedean spiral k-space trajectory. The Conical-SPRITE method utilizes a system of spirals mapped to conical surfaces to sample the k-space cube. The sampled k-space points are naturally Cartesian grid points, eliminating the requirement of a re-gridding procedure prior to image reconstruction. The effects of transient state behaviour on image resolution and signal/noise are explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号