首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
介绍了一种8~20 GHz单片低噪声放大器的研制过程。本电路采用两级放大拓扑,自偏置结构。采用串联负反馈技术降低噪声系数和输入驻波比,采用负反馈技术扩展带宽和提高动态范围。电路设计基于Agilent ADS微波设计环境,并进行版图电磁场验证以提高设计的准确率。芯片在0.25μm GaAs PHEMT工艺线上加工制作。测试结果表明,在8~20 GHz频率范围内,增益大于13 dB(正斜率),噪声系数小于3 dB,输入输出驻波比小于2∶1,1 dB压缩输出功率典型值为15 dBm,单电源5 V供电,电流小于90 mA。芯片面积为1.72 mm×1.35 mm。该芯片可广泛应用于各种微波系统。  相似文献   

2.
从行波放大器设计理论出发,研制了一款基于低噪声GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计的2~20 GHz单片微波集成电路(MMIC)宽带低噪声放大器。该款放大器由九级电路构成。为了进一步提高放大器的增益,采用了一个共源场效应管和一个共栅场效应管级联的拓扑结构,每级放大器采用自偏压技术实现单电源供电。测试结果表明,本款低噪声放大器在外加+5 V工作电压下,能够在2~20 GHz频率内实现小信号增益大于16 dB,增益平坦度小于±0.5 dB,输出P-1 dB大于14 dBm,噪声系数典型值为2.5 dB,输入和输出回波损耗均小于-15 dB,工作电流仅为63 mA,低噪声放大器芯片面积为3.1 mm×1.3 mm。  相似文献   

3.
报道了基于0.25μm GaAs PHEMT工艺的2.8~4.2GHz MMIC低噪声放大器,详细介绍和分析了低噪声放大器的器件基础和设计原理,设计采用源极串联电感负反馈方法使输入阻抗共轭匹配和最小噪声匹配趋于一致,偏置网络采用自偏置栅压、单电源供电,并用ADS软件仿真。电路评估板选用Rogers RO4350B,在2.8~4.2GHz频段内测得增益大于20dB、增益平坦度小于2.5dB、噪声系数小于2.3dB、输入输出驻波比小于2.0。  相似文献   

4.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

5.
基于0.15μm GaAs PHEMT低噪声工艺,采用二种不同的电路结构——分布式和负反馈,研制了两种超宽带低噪声放大器芯片,两种芯片都达到了2~20GHz的超宽带要求。两款芯片均使用单电源+5V自偏置供电。分布式低噪声放大器芯片的典型增益为17dB,典型噪声系数为2.5dB,输入驻波≤1.6,输出驻波≤1.9,1dB增益压缩输出功率≥14dBm,电流≤75mA;负反馈低噪声放大器芯片的典型增益≥20dB,典型噪声系数≤3.0dB,输入输出驻波≤2.1,1dB增益压缩输出功率≥14dBm,电流≤60mA。用探索到的杂谱抑制理念,设计的两种放大器在全频带、全温(-55~+125℃)、大小信号输入下均未见到杂波,成功解决了国外同类产品HMC462在低温(-55℃)下存在杂散的严重问题。  相似文献   

6.
主要介绍了C波段高增益低噪声单片放大器的设计方法和电路研制结果。电路设计基于Agilent ADS微波设计环境,采用GaAs PHEMT工艺技术实现。为了消除C波段低噪声放大器设计中在低频端产生的振荡,提出了在第三级PHEMT管的栅极和地之间放置RLC并联再串联电阻吸收网络的方法,降低了带外低频端的高增益,从而消除了多级级联低噪声放大器电路中由于低频端增益过高产生的振荡。通过电路设计与版图电磁验证相结合的方法,使本产品一次设计成功。本单片采用三级放大,工作频率为5~6GHz,噪声系数小于1.15dB,增益大于40dB,输入输出驻波比小于1.4∶1,增益平坦度ΔGp≤±0.2dB,1dB压缩点P-1≥10dBm,直流电流小于90mA。  相似文献   

7.
刘志军  高学邦  吴洪江 《半导体情报》2009,46(7):437-440,445
主要介绍了C波段高增益低噪声单片放大器的设计方法和电路研制结果。电路设计基于Agilent ADS微波设计环境,采用GaAs PHEMT工艺技术实现。为了消除C波段低噪声放大器设计中在低频端产生的振荡,提出了在第三级PHEMT管的栅极和地之间放置RLC并联再串联电阻吸收网络的方法,降低了带外低频端的高增益,从而消除了多级级联低噪声放大器电路中由于低频端增益过高产生的振荡。通过电路设计与版图电磁验证相结合的方法,使本产品一次设计成功。本单片采用三级放大,工作频率为5~6GHz,噪声系数小于1.15dB,增益大于40dB,输入输出驻波比小于1.4∶1,增益平坦度ΔGp≤±0.2dB,1dB压缩点P-1≥10dBm,直流电流小于90mA。  相似文献   

8.
2~8 GHz微波单片可变增益低噪声放大器   总被引:1,自引:0,他引:1  
报道了一种微波宽带 Ga As单片可变增益低噪声放大器芯片。该芯片采用南京电子器件研究所 76mm圆片 0 .5μm PHEMT标准工艺制作而成。工作频率范围为 2~ 8GHz,在零衰减时 ,整个带内增益大于 2 5d B,噪声系数最大为 3 .5 d B,增益平坦度小于± 0 .75 d B,输入驻波小于 2 .0 ,输出驻波小于 2 .5 ,输出功率大于 1 0d Bm。放大器增益可控大于 3 0 d B。实验发现 ,芯片具有良好的温度特性。该芯片面积为 3 .6mm× 2 .2 mm。  相似文献   

9.
侯阳  张健  李凌云  孙晓玮 《半导体学报》2008,29(7):1373-1376
基于0.15μm GaAs pHEMT工艺,设计和制作了一款宽带单片集成低噪声放大器.放大器设计采用四级级联的拓扑结构以获得高增益.芯片尺寸2mm×lmm.实测性能指标为:工作频段45~65GHz,增益18±1.5dB,输入驻波比小于3,输出驻波比小于2.3,直流功耗96mW.在增益、带宽和功耗上达到国际现有产品指标.该芯片可被应用于60GHz宽带无线通信系统.  相似文献   

10.
侯阳  张健  李凌云  孙晓玮 《半导体学报》2008,29(7):1373-1376
基于0.15μm GaAs pHEMT工艺,设计和制作了一款宽带单片集成低噪声放大器.放大器设计采用四级级联的拓扑结构以获得高增益.芯片尺寸2mm×lmm.实测性能指标为:工作频段45~65GHz,增益18±1.5dB,输入驻波比小于3,输出驻波比小于2.3,直流功耗96mW.在增益、带宽和功耗上达到国际现有产品指标.该芯片可被应用于60GHz宽带无线通信系统.  相似文献   

11.
利用负反馈放大器设计原理,采用GaAs PHEMT工艺技术,设计制作了一种微波宽带GaAs PHEMT低噪声放大器芯片,并给出了详细测试曲线.该放大器由两级组成,采用负反馈结构,工作频率0.8~8.5 GHz,整个带内功率增益19 dB,噪声系数1.55 dB,增益平坦度小于±0.7 dB,输入驻波比1.6,输出驻波比1.8,1 dB压缩点输出功率大于10 dBm,芯片内部集成偏置电路,单电源 5 V供电,芯片具有良好的温度特性.该芯片面积为2.5 mm × 1.2 mm.  相似文献   

12.
孙昕  陈莹  陈丽  李斌 《半导体技术》2017,42(8):569-573,597
采用稳懋公司150 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了一款5 ~ 10 GHz单片微波集成电路(MMIC)低噪声放大器(LNA).该LNA采用三级级联结构,且每一级采用相同的偏压条件,电路的低频工作端依靠电容反馈,高频工作端依靠电阻反馈调节阻抗匹配,从而实现宽带匹配,芯片面积为2.5 mm×1 mm.测试结果表明,工作频率为5~10 GHz,漏极电压为2.3V,工作电流为70 mA时,LNA的功率增益达到35 dB,平均噪声温度为82 K,在90%工作频段内输入输出回波损耗优于-15 dB,1 dB压缩点输出功率为10.3 dBm,仿真结果与实验结果具有很好的一致性.  相似文献   

13.
<正> Shown in the front cover is a scanning electron micrograph of a 12GHz two-stagelow noise amplifier MMIC's chip with the size of 3.22×1.49×0.2mm~3, consisting of 2GaAs MESFETs, 6MIM capacitors, 8 airbridges and 9 microstrip lines fabricated byNEDI in 1988. Optimization of the circuits has been done employing our own NAMPprogram, resulting in a noise figure of 3.1dB and an associated gain of 14dB at11.7-12.2GHz.  相似文献   

14.
基于90 nm栅长的InP高电子迁移率晶体管(HEMT)工艺,研制了一款工作于130 ~140 GHz的MMIC低噪声放大器(LNA).该款放大器采用三级级联的双电源拓扑结构,第一级电路在确保较低的输入回波损耗的同时优化了放大器的噪声,后两级则采用最大增益的匹配方式,保证了放大器具有良好的增益平坦度和较小的输出回波损耗.在片测试结果表明,在栅、漏极偏置电压分别为-0.25 V和3V的工作条件下,该放大器在130~ 140 GHz工作频带内噪声系数小于6.5 dB,增益为18 dB±1.5 dB,输入电压驻波比小于2:1,输出电压驻波比小于3:1.芯片面积为1.70 mm×1.10 mm.该低噪声放大器有望应用于D波段的收发系统中.  相似文献   

15.
4~8GHz宽带单片集成低噪声放大器设计   总被引:1,自引:0,他引:1  
俞汉扬  陈良月  李昕  杨涛  高怀 《电子科技》2011,24(12):38-41
基于0.15μm GaAs PHEMT工艺设计了一款C波段宽带单片集成低噪声放大器。电路由三级放大器级联而成,三级电路结构均使用电阻自偏压技术来实现单电源供电,它既可保证PHEMT管处于低噪声高增益的工作点,又可将所有元器件集成在单片GaAs衬底上,解决了供电复杂的问题。第三级电路采用了并联负反馈结构,降低了带内低频端...  相似文献   

16.
基于砷化镓(GaAs)赝晶型高电子迁移率晶体管(PHEMT)工艺,研制了一款25~45 GHz宽带单片微波集成电路(MMIC)低噪声放大器。该放大器采用三级级联的双电源结构,前两级在确保良好的输入回波损耗的同时优化了放大器的噪声;末级采用最大增益的匹配方式,保证了良好的增益平坦度、输出端口回波损耗以及输出功率。此外还对源电感和宽带匹配都进行了优化,实现了低噪声下的宽带输出。在片测试表明,在栅、漏偏置电压分别为-0.38 V和3 V,电流为60 mA的工作条件下,该放大器在25~45 GHz频带内噪声系数小于2 dB,增益为(22±1.5) dB,输入、输出电压驻波比典型值为2:1,1 dB增益压缩输出功率(P-1 dB)典型值为10 dBm。该低噪声放大器可以用于宽带毫米波收发系统。  相似文献   

17.
曾志  周鑫 《半导体技术》2021,46(5):354-357
基于0.15 μm GaAs pin二极管和GaAs PHEMT工艺,设计并实现了一款5~13 GHz限幅低噪声放大器(LNA)单片微波集成电路(MMIC).该MMIC中限幅器采用三级反向并联二极管结构,优化了插入损耗和耐功率性能;LNA采用两级级联设计,利用负反馈和源电感匹配,在宽带下实现平坦的增益和较小的噪声;限幅器和LNA进行一体化设计,实现了宽带耐功率和低噪声目标.测试结果表明,在5~13GHz内,该MMIC的小信号增益大于20 dB,噪声系数小于1.8 dB,耐功率大于46 dBm(2 ms脉宽,30%占空比),总功耗小于190 mW,芯片尺寸为3.3 mm×1.2 mm.限幅LNA MMIC芯片的尺寸较小,降低了组件成本,同时降低了组件装配难度,提高通道之间的一致性.  相似文献   

18.
X波段宽带单片集成低噪声放大器设计   总被引:1,自引:1,他引:1       下载免费PDF全文
采用负反馈三级级联方案,使用UMS公司的0.25μm GaAs PHEMT工艺,设计制作了一个X波段宽带单片集成低噪声放大器.测试结果为: 5V单电源工作,在6~11.5GHz频率范围,增益>29.5dB,噪声系数<1.7dB.具有频带宽、低噪声、高增益、单电源应用等显著特点,特别适合大型相控阵雷达T/R组件中使用.  相似文献   

19.
X波段宽带单片低噪声放大器   总被引:12,自引:1,他引:12  
从获取放大器的等噪声系数圆最大半径的角度来进行电路设计,设计了工作于X波段9~14GHz的宽带低噪声单片放大器,采用法国OMMIC公司的0.2μmGaAsPHEMT工艺(fT=60GHz)研制了芯片。在片测试结果为在9~14GHz,噪声系数<2.5dB,最小噪声系数在10.4GHz为2.0dB,功率增益在所需频段9~14GHz大于21dB,输入回波损耗<-10dB,输出回波损耗<-6dB。在11.5GHz,输出1dB压缩点功率为19dBm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号