首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When the primary electron-donation pathway from the water-oxidation complex in photosystem II (PS II) is inhibited, chlorophyll (Chl(Z) and Chl(D)), beta-carotene (Car) and cytochrome b(559) are alternate electron donors that are believed to function in a photoprotection mechanism. Previous studies have demonstrated that high-frequency EPR spectroscopy (at 130 GHz), together with deuteration of PS II, yields resolved Car(+) and Chl(+) EPR signals (Lakshmi et al. J. Phys. Chem. B 2000, 104, 10 445-10 448). The present study describes the use of pulsed high-frequency EPR spectroscopy to measure the location of the carotenoid and chlorophyll radicals relative to other paramagnetic cofactors in Synechococcus lividus PS II. The spin-lattice relaxation rates of the Car(+) and Chl(+) radicals are measured in manganese-depleted and manganese-depleted, cyanide-treated PS II; in these samples, the non-heme Fe(II) is high-spin (S = 2) and low-spin (S = 0), respectively. The Car(+) and Chl(+) radicals exhibit dipolar-enhanced relaxation rates in the presence of high-spin (S = 2) Fe(II) that are eliminated when the Fe(II) is low-spin (S = 0). The relaxation enhancements of the Car(+) and Chl(+) by the non-heme Fe(II) are smaller than the relaxation enhancement of Tyr(D)(*) and P(865)(+) by the non-heme Fe(II) in PS II and in the reaction center from Rhodobactersphaeroides, respectively, indicating that the Car(+)-Fe(II) and Chl(+)-Fe(II) distances are greater than the known Tyr(D)(*)-Fe(II) and P(865)(+)-Fe(II) distances. The Car(+) radical exhibits a greater relaxation enhancement by Fe(II) than the Chl(+) radical, consistent with Car being an earlier electron donor to P(680)(+) than Chl. On the basis of the distance estimates obtained in the present study and by analogy to carotenoid-binding sites in other pigment-protein complexes, possible binding sites are discussed for the Car cofactors in PS II. The relative location of Car(+) and Chl(+) radicals determined in this study provides valuable insight into the sequence of electron transfers in the alternate electron-donation pathways of PS II.  相似文献   

2.
Abstract— The chlorophyll a fluorescence properties of Gonyaulax polyedra cells before and after transfer from a lightdark cycle (LD) to constant dim light (LL) were investigated. The latter display a faster fluorescence transient from the level ‘I’ (intermediary peak) to ‘D’ (dip) to ‘P’ (peak) than the former (3 s as compared to 10 s), and a different pattern of decline in fluorescence from ‘I’ to ‘D’ and from ‘P’ to the steady state level with no clearly separable second wave of slow fluorescence change, referred to as ‘s' (quasi steady state)→‘M’ (maximum) →‘T’ (terminal steady state). The above differences are constant features of cells in LD and LL, and are not dependent on the time of day. They are interpreted as evidence for a greater ratio of photosystem II/photosystem I activity in cells in LL. After an initial photoadaptive response following transfer from LD to LL, the cell absorbance at room temperature and fluorescence emission spectra at 77 K for cells in LL and LD are comparable. The major emission peak is at 685–688 nm (from an antenna Chl a 680, perhaps Chl a-c complex), but, unlike higher plants and other algae, the emission bands at 696–698 nm (from Chl aII complex, Chl a 685, close to reaction center II) and 710–720 nm (from Chl a1, complexes, Chl a 695, close to reaction center I) are very minor and could be observed only in the fluorescence emission difference spectra of LL minus LD cells and in the ratio spectra of DCMU-treated to non-treated cells. Comparison of emission spectra of cells in LL and LD suggested that, in LL, there is a slightly greater net excitation energy transfer from the light-harvesting peridinin-Chl a (Chl a 670) complex, fluorescing at 675 nm, to the other antenna chlorophyll a complex fluorescing at 685–688 nm, and from the Chl a., complex to the reaction center II. Comparison of excitation spectra of fluorescence of LL and LD cells, in the presence of DCMU, confirmed that cells in LL transfer energy more extensively from the peridinin-Chl a complex to other Chl a complexes than do cells in LD.  相似文献   

3.
In photosystem II, absorbed light energy is transferred to a reaction centre consisting of chlorophyll units. Release of an electron from the reaction centre is the starting point for the charge separation and electron transport chain in PSII. Crystal structures of the reaction centre have identified two chlorophyll monomers forming a dimer with a partial structural overlap, thus being stabilized by van der Waals interactions. However, the magnitude of this interaction is not accurately known. In this work, the structure of the chlorophyll dimer has been optimized for the first time using dispersion-corrected density functional theory (B3LYP-DCP) revealing the magnitude of dimerization to be approximately -17 kcal mol(-1). The dispersion interaction is shown to be of great significance for the chlorophyll dimer stabilization. In addition, the redox potential of the chlorophyll dimer is calculated to be 1283 mV in good agreement with recent experimental data.  相似文献   

4.
A comprehensive study of the photophysical properties of chlorophyll (Chl) d in 1:40 acetonitrile-methanol solution is performed over the temperature range 170-295 K. From comparison of absorption and emission spectra, time-dependent density-functional calculations and homologies with those of Chl a, we assign the key features of the absorption and fluorescence spectra. Possible photophysical energy relaxation mechanisms are summarized, and thermal equilibration processes are studied in detail by monitoring the observed emission profiles and quantum yields as a function of excitation energy. In particular, we concentrate on emission subsequent to excitation in the extreme far-red tail of the Qy absorption spectrum, with this emission partitioned into contributions from hot-band absorptions as well as uphill energy transfer processes that occur subsequent to absorption. No unusual photophysical processes are detected for Chl d; it appears that all intramolecular relaxation processes reach thermal equilibration on shorter timescales than the fluorescence lifetime even at 170 K. The results from these studies are used to reinterpret a previous study of photochemical processes observed in intact cells and their acetone extracts of the photosynthetic system of Acaryochloris marina. In the study of Mimuro et al., light absorbed by Chl d at 736 nm is found to give rise to emission by another species, believed to also be Chl d, at 703 nm; this uphill energy transfer process is easily rationalized in terms of the thermal equilibration processes that we deduced for Chl d. However, no evidence is found in the experimental results of Mimuro et al. to support claims that (nonequilibrium) uphill energy transfer is additionally observed to Chl a species that emit at 670-680 nm. This finding is relevant to broader issues concerning the nature of the special pair in photosystem II of A. marina because suggestions that it is comprised of Chl a can only be correct if nonthermal uphill energy transfer processes from Chl d are operative.  相似文献   

5.
The energy and oscillator strength of electronic transitions of chlorophyll (Chl)-amino acid complexes were calculated by using molecular orbital methods. The energies varied widely with coordinated amino acids and the difference between the maximum and minimum energy was about 830 cm-1. This energy difference was comparable with the spreading of absorption bands for light-harvesting Chl-protein complexes of photosystem II (LHC II) of green plants. The feature of the Qy band for pea LHC II was interpreted with the aid of the calculated energies and oscillator strengths. Four spectral components of the band were assigned to individual Chl-amino acid complexes.  相似文献   

6.
The reaction center chlorophylls a (Chla) of photosystem II (PSII) are composed of six Chla molecules including the special pair Chla P(D1)/P(D2) harbored by the D1/D2 heterodimer. They serve as the ultimate electron abstractors for water oxidation in the oxygen-evolving Mn(4)CaO(5) cluster. Using the PSII crystal structure analyzed at 1.9 ? resolution, the redox potentials of P(D1)/P(D2) for one-electron oxidation (E(m)) were calculated by considering all PSII subunits and the protonation pattern of all titratable residues. The E(m)(Chla) values were calculated to be 1015-1132 mV for P(D1) and 1141-1201 mV for P(D2), depending on the protonation state of the Mn(4)CaO(5) cluster. The results showed that E(m)(P(D1)) was lower than E(m)(P(D2)), favoring localization of the charge of the cationic state more on P(D1). The P(D1)(?+)/P(D2)(?+) charge ratio determined by the large-scale QM/MM calculations with the explicit PSII protein environment yielded a P(D1)(?+)/P(D2)(?+) ratio of ~80/~20, which was found to be due to the asymmetry in electrostatic characters of several conserved D1/D2 residue pairs that cause the E(m)(P(D1))/E(m)(P(D2)) difference, e.g., D1-Asn181/D2-Arg180, D1-Asn298/D2-Arg294, D1-Asp61/D2-His61, D1-Glu189/D2-Phe188, and D1-Asp170/D2-Phe169. The larger P(D1)(?+) population than P(D2)(?+) appears to be an inevitable fate of the intact PSII that possesses water oxidation activity.  相似文献   

7.
Abstract. –This review discusses recent spectroscopic studies aimed at discovering the structure, orientation, and function of chlorophyll in vivo. In plant membranes there appear to be at least two distinct types of chlorophyll a. The greater part, over 99%, is antenna chlorophyll which absorbs and transfers radiant energy to a few specialized chlorophyll molecules in a reaction center where the actual charge separation occurs. A dimer-oligomer model for antenna chlorophyll has been proposed on the basis of comparative studies of the absorption spectra of chlorophyll in various dry solvents and in vivo. Unfortunately a similarity between essentially structureless broad spectra is very weak evidence for their original identity. Also the requirement of an anhydrous environment for most of the chlorophyll in biological material is an unlikely postulate. A cross-linked, linear polymer model of chlorophyll in vivo has also been proposed. Recent Resonance Raman spectroscopic results appear to rule out, in large part, either polymer model and once again suggest that it is the various attachments of chlorophyll to proteins which determine its function as antenna pigment in vivo. Circular dichroism measurements of chlorophyll in various plant materials have also led to the conclusion that antenna chlorophyll has strong interaction with protein. However, some doubt still exists as to the interpretation of these CD results. New studies of fluorescence, polarized fluorescence and Resonance Raman spectroscopy of various plant species corroborate the original proposition, based upon deconvolution of absorption spectra, that antenna chlorophyll occurs in vivo in at least five discrete pools, and that each pool is likely to be located in the same environment in different plants. A new model-systems approach to simulating chlorophyll in vivo has come through the use of lipid bilayers and liposomes. Charge transfer has been observed between chlorophyll in a lipid phase and phycobiliproteins or cytochrome c. The most promising, newly synthesized model for the reaction center, P700, is a covalently bound dimeric derivative of pyrochlorophyllide a. Its properties are similar to P700 in several respects except for reversible photooxidation which has not yet been observed. By detergent treatments chlorophyll-protein complexes having about 20–40 chlorophyll a molecules for every P700 have been isolated from different plants, and their spectroscopic properties are under investigation in several laboratories. The several hypotheses to explain the shape of the oxidized minus reduced absorption difference spectrum of P700 have not yet been reconciled. The nature of the photosystem II reaction center chlorophyll, P680, is also a subject of active investigation. Its absorption difference spectrum appears to have two kinetic components.  相似文献   

8.
9.
《Chemical physics letters》1987,142(6):433-438
Photon-echo and transient hole-burning experiments on the P-band of the reaction center of photosystem II are reported which show that the P-band exhibits a large homogeneous width. A photon-echo signal with a decay time of 500 ps is also observed in the same spectral region and assigned to extraneous chlorophyll. These observations are discussed with reference to the bacterial reaction center and photosystem I.  相似文献   

10.
Electron and X-ray crystallography have provided intermediate structural models for photosystem II (PSII), the membrane located multisubunit complex which uses light energy to split water into its elemental constituents. This reaction is thermodynamically demanding and involves the production of redox potentials in excess of 1 V. Structural analyses have now shown that the primary oxidant, P680, is not a 'special pair' of chlorophylls, as in other types of photosynthetic reaction centres, but a tetramer of equally spaced chlorophyll a molecules. Its high redox potential, and the involvement of four weakly coupled isoenergetic monomers rather than a strongly excitonically coupled 'special pair', has implications for redox mechanisms which are unique to PSII, and therefore not found in any other photosynthetic system. The importance of these features is discussed.  相似文献   

11.
The reaction center of photosystem II is susceptible to photodamage. In particular the D1 protein located in the photosystem II core has a rapid, light-dependent turnover termed the photosystem II repair cycle that, under illumination, degrades and resynthesizes D1 protein to limit accumulation of photodamaged photosystem II. Most studies concerning the effects of UVB (280-320 nm) on this cycle have been on cyanobacteria or specific phytoplankton species rather than on natural communities of phytoplankton. During a 5-year multidisciplinary project on the effects of UV radiation (200-400 nm) on natural systems, the effects of UVB on the D1 protein of natural phytoplankton communities were assessed. This review provides an overview of photoinhibitory effects of light on cultured and natural phytoplankton, with an emphasis on the interrelation of UVB exposure, D1 protein degradation and the repair of photosystem II through D1 resynthesis. Although the UVB component of the solar spectrum contributes to the primary photoinactivation of photosystem II, we conclude that, in natural communities, inhibition of the rate of the photosystem II repair cycle is a more important influence of UVB on primary productivity. Indeed, exposing tropical and temperate phytoplankton communities to supplemented UVB had more inhibitory effect on D1 synthesis than on the D1 degradation process itself. However, the rate of net D1 damage was faster for the tropical communities, likely because of the effects of high ambient light and water temperature on mechanisms of protein degradation and synthesis.  相似文献   

12.
[Mn2(III/IV)(mu-O) 2(terpy)2(OH 2)2](NO3)3 (1, where terpy = 2,2':6'2'-terpyridine) acts as a water-oxidation catalyst with HSO5(-) as the primary oxidant in aqueous solution and, thus, provides a model system for the oxygen-evolving complex of photosystem II (Limburg, J.; et al. J. Am. Chem. Soc. 2001, 123, 423-430). The majority of the starting [Mn2(III/IV)(mu-O)2](3+) complex is converted to the[Mn2(IV/IV)(mu-O)2](4+) form (2) during this reaction (Chen, H.; et al. Inorg. Chem. 2007, 46, 34-43). Here, we have used stopped-flow UV-visible spectroscopy to monitor UV-visible absorbance changes accompanying the conversion of 1 to 2 by HSO5(-). With excess HSO5(-), the rate of absorbance change was found to be first-order in [1] and nearly zero-order in [HSO5(-)]. At relatively low [HSO5(-)], the change of absorbance with time is distinctly biphasic. The observed concentration dependences are interpreted in terms of a model involving the two-electron oxidation of 1 by HSO5(-), followed by the rapid reaction of the two-electron-oxidized intermediate with another molecule of 1 to give two molecules of 2. In order to rationalize biphasic behavior at low [HSO5(-)], we propose a difference in reactivity of the [Mn2(III/)(IV)(mu-O)2](3+) complex upon binding of HSO5(-) to the Mn(III) site as compared to the reactivity upon binding HSO5(-) to the Mn(IV) site. The kinetic distinctness of the Mn(III) and Mn(IV) sites allows us to estimate upper limits for the rates of intramolecular electron transfer and terminal ligand exchange between these sites. The proposed mechanism leads to insights on the optimization of 1 as a water-oxidation catalyst. The rates of terminal ligand exchange and electron transfer between oxo-bridged Mn atoms in the oxygen-evolving complex of photosystem II are discussed in light of these results.  相似文献   

13.
Abstract— Growing wheat seedlings in the presence of BASF 13.338 [4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone], a PS II inhibitor of the pyridazinone group, brought about notable changes in the structure and functioning of photosynthetic apparatus. In BASF 13.338 treated plants, there was a decrease in the ratio of Chi a/Chl b, an increase in xanthophyll/carotene ratio and an increase in the content of Cyt b 559 (HP + LP). Chl/p700 ratio increased when measured with the isolated chloroplasts but not with the isolated PS I particles of the treated plants. The SDS-PAGE pattern of chloroplast preparations showed an increase in the CPII/CP I ratio. The F685/F740 ratio in the emission spectrum of chloroplasts at -196°C increased. The difference absorption spectrum of chloroplasts between the control and the treated plants showed a relative increase of a chlorophyll component with a peak absorption at 676 nm and a relative decrease of a chlorophyll component with a peak absorption at 692 nm for the treated plants. The excitation spectra of these chloroplast preparations were similar. Chloroplasts from the treated plants exhibited a greater degree of grana stacking as measured by the chlorophyll content in the 10 K pellet. The rate of electron transfer through photosystem II at saturating light intensity in chloroplast thylakoids isolated from the treated plants increased (by 50%) optimally at treatment of 125 μM BASF 13.338 as compared to the control. This increase was accompanied by an increase in (a) I50 value of DCMU inhibition of photosystem II electron transfer; (b) the relative quantum yield of photosystem II electron transfer; (c) the magnitude of C550 absorbance change; and (d) the rate of carotenoid photobleaching. These observations were interpreted in terms of preferential synthesis of photosystem II in the treated plants. The rate of electron transfer through photosystems I and through the whole chain (H2O → methyl viologen) also increased, due to an additional effect of BASF 13.338, namely, an increase in the rate of electron transfer through the rate limiting step (between plastoquinol and cytochrome f). This was linked to an enhanced level of functional cytochrome f. The increase in the overall rate of electron transfer occurred in spite of a decrease in the content of photosystem I relative to photosystem II. Treatment with higher concentrations (> 125 μM) of BASF 13.338 caused a further increase in the level of cytochrome f, but the rate of electron transfer was no greater than in the control. This was due to an inhibition of electron transfer at several sites in the chain.  相似文献   

14.
Abstract -The action spectrum and the quantum requirement of photoreduction (P.R) by hydrogen-adapted Scenedesmus have been determined under conditions where photosystem II is inoperative. The action spectrum of P.R., when compared to that of photosynthesis, shows approximately a 20 nm shift in the long wavelength maxima and an apparent decreased utilization of light in the wavelength region 600–650 nm. The quantum requirement for P.R. is high at wavelengths below 650 nm and decreases to a minimum between 705–720 nm; the best value obtained was 10. These observations indicate that this process is exclusively a photosystem I reaction and furthermore offer additional evidence for a lack of appreciable transfer of excitation energy between the pigments of photosystems I and II. The relatively high requirement photophosphorylation or to the inadequacy of H2-hydrogenase system as the electron donor mechanism for photosystem I.  相似文献   

15.
Abstract— Dunaliella chloroplasts were fractionated according to C. Arntzen et al, Biochim. Biophys. Acta 256 , 85–107, 1972. The initial French-press treatment and differential centrifugation produced Fraction 1 (Fr 1) enriched in photosystem I activity and a heavier Fraction 2 (Fr 2). When Fr 2 was treated with digitonin followed by either gradient or differential centrifugation, two more fractions were recovered: Fr 1 g with a photosystem 1 activity similar to that of Fr 1, and Fr 2 g with very low photosystem II activity. Photosystem II activity was considerably lower in these Dunaliella chloroplasts and fractions than in spinach particles measured under the same conditions, but the relative activities between the fractions were similar to those for spinach. Fr 2 always had greater photosystem II activity than Fr 1, but the digitonin fractions were low and similar in photosystem II activity. Photosystem II activity was measured as the reduction of 2, 6–dichlorophenol indophenol (DCIP) with H2O, diphenylcarbazide (DPC) or Mn2+ as electron donor. The results indicated that exogenous manganous ion competed with H2O as an electron donor to photosystem II in broken chloroplasts initially, but after 10–15 s of illumination, the Mn3+ formed began to reoxidize DCIP and a cyclic reaction ensued. DPC and Mn2+ appeared to react at different sites. Computer-assisted curve analysis of the absorption spectrum of each fraction revealed four major component curves representing the absorbing forms of chlorophyll a at 663, 670, 679 and 684 nm seen in numerous other in vivo chlorophyll spectra (C. S. French et al., Plant Physiol. 49 , 421–429, 1972). However, Fr 2g had approx. 20 percent more of Ca663 and Ca670 and 10% more absorption by chl b than Fr 1 which correlated with the difference in photosystem II activity. On the long wavelength side, Fr 2 g had no Ca694 and almost no photosystem I activity. The results are not sufficient to answer the question of whether the photosystem I particle obtained from the original homogenate is significantly similar to or different from the corresponding fraction obtained from Fr 2 with digitonin.  相似文献   

16.
Electron transport through photosystem II (PSII), measured as oxygen evolution, was investigated in isolated PSII particles and thylakoid membranes irradiated with white light of intensities (I) of 20 to about 4000 micromol of photons/(m2.s). In steady-state conditions, the evolution of oxygen varies with I according to the hyperbolic expression OEth = OEth(max)I/(L1/2 + I) (eq i) where OEth is the theoretical oxygen evolution, OEth(max) is the maximum oxygen evolution, and L1/2 is the light intensity giving OEth(max)/2. In this work, the mathematical derivation of this relationship was performed by using the Langmuir adsorption isotherm and assuming that the photon interaction with the chlorophyll (Chl) in the PSII reaction center is a heterogeneous reaction in which the light is represented as a stream of particles instead of an electromagnetic wave (see discussion in Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991). In accordance with this approximation, the Chl molecules (P680) were taken as the adsorption surfaces (or heterogeneous catalysts), and the incident (or exciting) photons as the substrate, or the reagent. Using these notions, we demonstrated that eq i (Langmuir equation) is a reliable interpretation of the photon-P680 interaction and the subsequent electron transfer from the excited state P680, i.e., P680*, to the oxidized pheophytin (Phe), then from Phe- to the primary quinone QA. First, eq i contains specific functional and structural information that is apparent in the definition of OEth(max) as a measure of the maximal number of PSII reaction centers open for photochemistry, and L1/2 as the equilibrium between the electron transfer from Phe- to QA and the formation of reduced Phe in the PSII reaction center by electrons in provenance from P680*. Second, a physiological control mechanism in eq i is proved by the observation that the magnitudes of OEth(max) and L1/2 are affected differently by exogenous PSII stimulators of oxygen evolution (Fragata, M.; Dudekula, S. J. Phys. Chem. B 2005, 109, 14707). Finally, an unexpected new concept, implicit in eq i, is the consideration of the photon as the substrate in the photochemical reactions taking place in the PSII reaction center. We conclude that the Langmuir equation (eq i) is a novel mathematical formulation of energy and electron transfer in photosystem II.  相似文献   

17.
Abstract— The continuous illumination induced kinetics of photochemical energy conversion at system II have been measured with isolated and 3-(3, 4-dichlorophenyl)-l, l-dimethylurea (DCMU) poisoned chloroplasts by means of absorbance difference spectroscopy in the UV and by the area growth over the fluorescence induction curve at room temperature. An optimal set of conditions was found in order to isolate absorbance changes caused by the reduction of the primary electron acceptor Q of PS II by suppressing other electron transfer processes. The light induced kinetics of Q- accumulation in the absorbance change measurements were found to be biphasic and strictly correlated with the kinetics of the area growth measured under the same conditions. From the resolution of the biphasic kinetics at different wavelengths in the UV region of the spectrum, it was found that both kinetic components in the system II photochemistry involve the reduction of a plastoquinone molecule to its plastosemiquinone anion. From the two kinetic components one was fast and non-exponential and the other relatively slow with an exponential time course. The initial rate difference in the kinetics of the two components was by a factor of approximately 3. A difference by a factor of about three was also found in the flash saturation curves of the two kinetic components.
The results are explained by the hypothesis that in higher plant chloroplasts there are system II reaction centers embedded in a large pigment matrix with statistical energy transfer, and system II reaction centers embedded in separate, in terms of excitation energy transfer, units. The effective absorption cross section per reaction center for the centers in the statistical pigment bed is approximately 3 times larger than that of the reaction centers in the separate system II units. The two types of system II reaction centers have different yields of excitation trapping and charge stabilization properties.  相似文献   

18.
This mini review presents current topics of discussion about photosystem (PS) I and PS II of photosynthesis in the Acaryochloris marina. A. marina is a photosynthetic cyanobacterium in which chlorophyll (Chl) d is the major antenna pigment (>95%). However, Chl a is always present in a few percent. Chl d absorbs light with a wavelength up to 30 nm red-shifted from Chl a. Therefore, the chlorophyll species of the special pair in PS II has been a matter of debate because if Chl d was the special pair component, the overall energetics must be different in A. marina. The history of this field indicates that a purified sample is necessary for the reliable identification and characterization of the special pair. In view of the spectroscopic data and the redox potential of pheophytin, we discuss the nature of special pair constituents and the localization of the enigmatic Chl a.  相似文献   

19.
The D2 protein of photosystem II is relatively stable in vivo under photosynthetic active radiation, but its degradation accelerates under UVB radiation. Little is known about accelerated D2 protein degradation. We characterized wavelength dependence and sensitivity toward photosystem II inhibitors. The in vivo D2 degradation spectrum resembles the pattern for the rapidly turning over D1 protein of photosystem II, with rates being maximal in the UVB region. We propose that D2 degradation, like D1 degradation, is activated by distinct photosensitizers in the UVB and visible regions of the spectrum. In both wavelength regions, photosystem II inhibitors that are known to be targeted to the D1 protein affect D2 degradation. This suggests that degradation of the two proteins is coupled, D2 degradation being influenced by events occurring at the QB niche on the D1 protein.  相似文献   

20.
The protective action of co-solutes, such as sucrose and glycinebetaine, against the thermal inactivation of photosystem II function was studied in untreated and Mn-depleted photosystem II preparations. It was shown that, in addition to the reactions that depend on the oxygen evolving activity of the photosystem, those that implicate more intimately the reaction center itself are protected by high concentrations of osmolytes. However, the temperature required to inhibit oxygen evolution totally in the presence of osmolytes is lower than that required to eliminate reactions, such as P680 (primary electron donor in photosystem II) photo-oxidation and pheophytin photo reduetion, which only involve charge separation and primary electron transport processes. The energy storage measured from the thermal dissipation yield during photoacoustic experiments and the yield of variable fluorescence are also protected to a significant degree (up to 30%) at temperatures at which oxygen evolution is totally inhibited. It is suggested that a cyclic electron transport reaction around photosystem II may be preserved under these conditions and may be responsible for the energy storage measured at relatively high temperatures. This interpretation is also supported by thermoluminescence data involving the recombination between reduced electron acceptors and oxidized electron donors at - 30 and - 55 °C. The data also imply that a high concentration of osmolyte allows the stabilization of the photosystem core complex together with the oxygen-evolving complex. The stabilization effect is understood in terms of the minimization of protein-water interactions as proposed by the theory of Arakawa and Timasheff (Biophys. J., 47 (1985) 411--414).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号