共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The method of extended perturbation series is applied to solve for laminar natural convection from an isothermal, thin vertical cylinder. The series in terms of the transverse curvature parameterξ extended to five terms and is subsequently improved by applying the Shanks transformation twice. The validity of the solution is extended up toξ=10 and possibly even beyond. Up toξ=10, the results for wall shear as well as the local and average Nusselt numbers agree very closely with those of local nonsimilarity and finite difference solutions. The ease of computation coupled with high accuracy makes the present approach far more attractive than the currently popular local nonsimilarity and finite difference methods. Its success with the present problem should motivate applications to a host of nonsimilar boundary layer flows. 相似文献
3.
In this work, the beginning of the instability (onset of convection) of an air layer of infinite width and depth heated from underneath with a constant heat flux is studied. In the theoretical part, the instability is studied using the quasi-static assumption. The functional relationship of Rayleigh number vs. horizontal wave number of the disturbance is obtained in a digital computer using Green's Fonctions for the case of Prandtl number equal to one. Furthermore in order to make a comparison with similar investigations, limiting cases of infinite and very small Prandtl numbers are also taken into consideration.-In the experimental part, Rayleigh numbers corresponding to the onset of manifest convection based on visual observations are investigated by optical methods under various heat fluxes. The average value measured is found to be 145. 相似文献
4.
Natural convection in a fluid saturated porous medium confined in a horizontal circular cylinder and rotating about its axis, with isothermal boundary conditions and uniform internal heat sink, is studied by both numerical and perturbation methods. No symmetry with respect to the vertical diameter is expected for the flow and temperature fields and the whole region must be involved in the computation. Only the weak rotation regime, for which the centrifugal force is negligible compared to gravity, is considered. Governing equations for the two-dimensional flow field are solved in both rotating and non-rotating coordinate systems. Results indicate that rotation significantly decreases the radial amplitude of fluid particle trajectories in the radial direction and thus reduces the overall heat transfer. 相似文献
5.
Two-dimensional numerical studies of flow and temperature fields for turbulent natural convection and surface radiation in
inclined differentially heated enclosures are performed. Investigations are carried out over a wide range of Rayleigh numbers
from 108 to 1012, with the angle of inclination varying between 0° and 90°. Turbulence is modeled with a novel variant of the k–ε closure model. The predicted results are validated against experimental and numerical results reported in literature. The
effect of the inclination of the enclosure on pure turbulent natural convection and the latter’s interaction with surface
radiation are brought out. Profiles of turbulent kinetic energy and effective viscosity are studied to observe the net effect
on the intensity of turbulence caused by the interaction of natural convection and surface radiation. The variations of local
Nusselt number and average Nusselt number are presented for various inclination angles. Marked change in the convective Nusselt
number is found with the orientation of enclosure. Also analyzed is the influence of change in emissivity on the flow and
heat transfer. A correlation relevant to practical applications in the form of average Nusselt number, as a function of Rayleigh
number, Ra, radiation convection parameter, N
RC and inclination angle of the enclosure, φ is proposed. 相似文献
6.
Takeo Saitoh 《Applied Scientific Research》1976,32(4):429-451
Heat transfer characteristics passing through the maximum density point around a horizontal ice cylinder immersed in water was studied both theoretically and experimentally. For the sake of a precise comparison, the stagnation point Nusselt number was measured and results then compared with those of the numerical computations that were obtained by solving the full Navier-Stokes equations. A fairly good agreement was seen between the theory and the experiment.At about 6°C of water temperature where the stagnation Nusselt number takes its minimum value, the instability of the flow was observed. It was found that two different computer solutions exist, which shows unstable aspects corresponding to the experimental result. 相似文献
7.
Anuar Ishak 《Heat and Mass Transfer》2009,46(2):147-151
The effects of thermal radiation and thermal buoyancy on the steady, laminar boundary layer flow over a horizontal plate is
investigated. The plate temperature is assumed to be inversely proportional to the square root of the distance from the leading
edge. The set of similarity equations is solved numerically, and the solutions are given for some values of the radiation
and buoyancy parameters for Prandtl number unity. It is found that dual solutions exist for negative values of the buoyancy
parameter, up to certain critical values. Beyond these values, the solution does no longer exist. Moreover, it is found that
there is no local heat transfer at the surface except in the singular point at the leading edge. The radiation parameter is
found to increase the local Stanton number. 相似文献
8.
Numerical investigation of transient laminar natural convection of air in a tall cavity 总被引:3,自引:0,他引:3
Transient laminar natural convection of air in a tall cavity has been studied numerically. The Navier-Stokes and Energy equations
were solved by the accurate projection method (PmIII), in which the derived Poisson equation for pressure potential was solved
by the approximate factorization one method (AF1). The aspect ratio of the tall cavity is 16, and the Prandtl number of air
filled in the tall cavity is 0.71. To obtain the numerical results of heat transfer by natural convection of air in the tall
cavity, the second order schemes for the space and time discretizations were utilized. The availability of the numerical algorithm
was also assessed by considering the natural convection of air in a square cavity which is differentially heated from side
walls. It was found that the overall Nusselt numbers for the Rayleigh numbers covering the range from 1000 to 100000 reveal
a good agreement with measured data. When Ra takes the value in the range from 100000 to 600000, the overall Nusselt number have a relative deviation less than 18% from
the experimental data. For the suddenly heating mode, the multicellular flow pattern occurs when Rayleigh number belongs to
the range of Ra from 7000 to 20000. or greater than 115000. At the critical number of cats' eye instability, the cell distance is just twice
of the cavity width. This is rather similar to the observed result for Bénard problem. When Ra is over 115000, a further increase of heat flux across the tall cavity causes serious cell-breaking. There are 8 cells when
Ra = 600000. 相似文献
9.
10.
This paper presents an advanced method for a 2-dimensional analysis of transient natural convection by finite element method. The present method, based on stream function—vorticity formulation, could get rid of numerical errors and constraint of perpendicular mesh subdivision, since we excluded a finite difference approximation of vorticity on no-slip boundaries. A considerable effect of upwind weighting function was examined. The method was successfully applied to a problem of natural convection around a horizontal hot cylinder. 相似文献
11.
Radiation-conduction interaction on mixed convection from a horizontal circular cylinder 总被引:1,自引:0,他引:1
A mixed convection flow of an optically dense viscous incompressible fluid along a horizontal circular cylinder has been
studied with the effect of radiation when the surface temperature is uniform. Using appropriate transformations, the boundary
layer equations governing the flow are reduced to local nonsimilarity form. Solutions of the governing equations are obtained
employing the implicit finite difference method. Effects of varying the pertinent parameters, such as, the Planck number,
R
w the surface temperature parameter, θw and the buoyancy parameter, α on the local skin-friction and local heat transfer coefficients are shown graphically as well
as in tabular form against the curvature parameter ξ, while taking Prandtl number Pr = 1.0. It is found that an increase of
R
d,θw or α leads to increases in the values of the local skin-friction and the local rate of heat transfer coefficients. At the
stagnation point asymptotic solutions for large value of α are also obtained and the effect of the other pertinent parameters
on the formation of the flow separation are studied.
Received on 28 July 1998 相似文献
12.
13.
14.
15.
A numerical study of laminar natural convection inside uniformly heated, partially or fully filled horizontal cylinders is made. A coordinate transformation which simplifies the discretization of the equations of motion and energy is utilized. The resulting system of partial differential equations with their boundary conditions is solved using central differences for various Prandtl and Grashof numbers for two different grid sizes. The flow in completely filled cylinders for which experimental data are available is predicted. Close agreement between steady-state predictions and experiments is obtained for temperature and velocity profiles as well as for the streamline contours and isotherms. The technique is further demonstrated by solving the transient natural convection flow inside a partially filled horizontal cylinder with an adiabatic free surface and subjected to uniform wall heating.
Nomenclature g acceleration due to gravity, m/s2 - Gr R * modified Grashof number =gqR4/kv2 - Gr R Grashof number =gTR3/v2 - H heat function vector, dimensionless - k thermal conductivity, W/mK - L(Y) cord length associated with coordinateY, dimensionless - Pr Prandtl number=v/ - q wall heat flux, W/m2 - R radius, m - r(X, Y,Z) distance of a boundary point from the reference axis, dimensionless - S vector derived from the flow field solution, dimensionless - T temperature, K - T w wall temperature, K - T reference temperature, K - t time, s - u, v velocity components inx, y directions, m/s - U, V dimensionless velocity components inX- and Y-direction normalized withU - U reference velocity=gqR2/k or gTR, m/s - V velocity vector, dimensionless - W vorticity vector, dimensionless - W vorticity, dimensionless - x, y, z cartesian coordinates, m - X, Y, Z cartesian coordinates normalized with a reference length, dimensionless Greek letters thermal diffusivity, m2/s - coefficient of thermal expansion, K–1 - ,,, non-dimensional coordinates in the transformed domain - non-dimensional temperature =(T–T)k/qR or T–T/Tw–T - v kinematic viscosity, m2/s - non-dimensional time=v/R2 GrRt or v/R2 G R * t - angle measured from the bottom of the cylinder, rads - * angle measured from the axis on (– ) plane, rads - heat potential, dimensionless - angle of incidence of the heat flux vector, rads - non-dimensional stream function - vector potential, dimensionless - grid size, dimensionless - 2 Laplacian operator - gradient vector 相似文献
Laminare freie Konvektion in horizontalen Zylindern
Zusammenfassung Es wurde eine numerische Berechnung der laminaren, freien Konvektion in gleichmäßig beheizten, teilweise oder ganz gefüllten, horizontalen Zylindern durchgeführt. Dabei wird eine Koordinatentransformation benützt, welche die Diskretisierung der Bewegungs- und der Energiegleichung vereinfacht. Das so resultierende System von partiellen Differentialgleichungen wird, zusammen mit seinen Randbedingungen, unter Verwendung einer Differenzenmethode für verschiedene Prandtl und Grashof-Zahlen sowie für zwei verschiedene Gittergrößen gelöst. Für den vollständig gefüllten Zylinder, für den experimentelle Daten verfügbar sind, wird die Strömung vorhergesagt. Dabei wird für stationäre Zustände gute Übereinstimmung zwischen Rechnung und Experiment erzielt. Dies gilt sowohl für den Verlauf der Stromlinien als auch für den der Isothermen. Das Verfahren wird weiterhin am Beispiel der Berechnung instationärer, freier Konvektion in einem partiell gefüllten, horizontalen Zylinder demonstriert, wobei eine adiabate, freie Oberfläche und gleichmäßige Beheizung der Wand angenommen sind.
Nomenclature g acceleration due to gravity, m/s2 - Gr R * modified Grashof number =gqR4/kv2 - Gr R Grashof number =gTR3/v2 - H heat function vector, dimensionless - k thermal conductivity, W/mK - L(Y) cord length associated with coordinateY, dimensionless - Pr Prandtl number=v/ - q wall heat flux, W/m2 - R radius, m - r(X, Y,Z) distance of a boundary point from the reference axis, dimensionless - S vector derived from the flow field solution, dimensionless - T temperature, K - T w wall temperature, K - T reference temperature, K - t time, s - u, v velocity components inx, y directions, m/s - U, V dimensionless velocity components inX- and Y-direction normalized withU - U reference velocity=gqR2/k or gTR, m/s - V velocity vector, dimensionless - W vorticity vector, dimensionless - W vorticity, dimensionless - x, y, z cartesian coordinates, m - X, Y, Z cartesian coordinates normalized with a reference length, dimensionless Greek letters thermal diffusivity, m2/s - coefficient of thermal expansion, K–1 - ,,, non-dimensional coordinates in the transformed domain - non-dimensional temperature =(T–T)k/qR or T–T/Tw–T - v kinematic viscosity, m2/s - non-dimensional time=v/R2 GrRt or v/R2 G R * t - angle measured from the bottom of the cylinder, rads - * angle measured from the axis on (– ) plane, rads - heat potential, dimensionless - angle of incidence of the heat flux vector, rads - non-dimensional stream function - vector potential, dimensionless - grid size, dimensionless - 2 Laplacian operator - gradient vector 相似文献
16.
The flow and heat transfer from a heated semi-infinite horizontal circular cylinder which is moving with a constant speed into a porous medium is considered. It is assumed that the Grashof and Reynolds numbers are large so that the governing equations are the three dimensional boundary-layer equations. A numerical procedure for solving these equations is described and the asymptotic solutions which are valid both near and distant from the leading edge of the cylinder are presented. The range of validity of these asymptotic solutions is discussed and the results are compared in detail with the full numerical solution. The problem is of practical importance, for example in the drilling of pipes into a geothermal reservoir.
Nomenclature a radius of cylinder - Gr Grashof number (=g(Tw-Ta/2) - g acceleration due to gravity - permeability in the porous medium - Nu local Nusselt number - total heat flux from cylinder - q w heat flux from cylinder - r radial co ordinate - Ra Rayleigh number (=g (Tw - Tt8) a/ ) - Re Reynolds number (=U t8 a/) - T temperature - u, v, w speeds inx, , r directions - x axial co ordinate - equivalent thermal diffusivity - thermal expansion coefficient - ratioGr/Re - similarity variable - dimensionless temperature (=(T- T)/(T w- T) - kinematic viscosity - azimuthal co ordinate - w cylinder surface - free stream 相似文献
Freie erzwungene Konvektion von einem beheizten schlanken horizontalen Zylinder, eingebettet in ein poröses Medium
Zusammenfassung Es wird die Strömung und der Wärmeübergang an einem beheizten, halbunendlichen horizontalen Kreiszylinder betrachtet, der mit konstanter Geschwindigkeit sich in ein poröses Medium bewegt. Dabei wird angenommen, daß die Grashof- und Reynolds-Zahlen groß sind, so daß die Bestimmungsgleichungen von den dreidimensionalen Grenzschichtgleichungen gebildet werden. Es wird ein numerisches Verfahren zur Lösung dieser Gleichungen beschrieben und eine asymptotische Lösung präsentiert, die sowohl in der Nähe als auch in großem Abstand von dem vorderen Ende des Zylinders gültig ist. Der Gültigkeitsbereich dieser asymptotischen Lösungen wird diskutiert und die Ergebnisse werden im Detail mit vollständigen numerischen Lösungen verglichen. Das Problem ist z.B. beim Eindringen von Rohrleitungen in geothermische Reservoire von praktischer Wichtigkeit.
Nomenclature a radius of cylinder - Gr Grashof number (=g(Tw-Ta/2) - g acceleration due to gravity - permeability in the porous medium - Nu local Nusselt number - total heat flux from cylinder - q w heat flux from cylinder - r radial co ordinate - Ra Rayleigh number (=g (Tw - Tt8) a/ ) - Re Reynolds number (=U t8 a/) - T temperature - u, v, w speeds inx, , r directions - x axial co ordinate - equivalent thermal diffusivity - thermal expansion coefficient - ratioGr/Re - similarity variable - dimensionless temperature (=(T- T)/(T w- T) - kinematic viscosity - azimuthal co ordinate - w cylinder surface - free stream 相似文献
17.
A numerical solution of the unsteady free convection on an isothermal horizontal circular cylinder whose temperature is suddenly increased is presented at large Grashof number. Solutions for simultaneous development of the momentum and thermal boundary-layers are obtained by using the local non-similarity solutions method, together with the difference-differential procedure. The transient approach of velocity and thermal fields to the ultimate steady state and the variations in time of wall shear and heat transfer coefficients were found. The results at the lower stagnation point of the cylinder for Prandtl number Pr=1.0 are seen to improve the previous study of Hermann [1]. 相似文献
18.
K. Gersten M. Grobel H. Klick W. Merzkirch 《International Journal of Heat and Fluid Flow》1991,12(4):331-335
Theoretical and experimental studies of flow separation in laminal natural convection are presented. Since classical boundary-layer theory cannot determine separation on curved walls in natural convection, two extensions of the classical boundary-layer theory are discussed: boundary-layer theory of higher order and double-deck theory. Both theories are applied to experiments on a vertical flat plate with humps. 相似文献
19.
20.
H. M. Badr 《国际流体数值方法杂志》1985,5(1):1-12
The influence of free stream direction on mixed (natural and forced) convective heat transfer from a circular cylinder is investigated. The cylinder, which has an isothermal surface, is placed with its axis horizontal and normal to the oncoming flow. The free stream direction varies between the vertically upward (parallel flow) and the vertically downward (contraflow) directions. The investigation is based on the time integration of the unsteady, two-dimensional equations of motion and energy until reaching steady conditions. The study is limited to Reynolds numbers up to Re = 40 and Grashoff numbers of Gr = Re2. The results are compared with the available experimental data and the agreement is satisfactory. 相似文献